$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

정보검색효율에 관한 연구

A Study on the Effectiveness of Information Retrieval

Abstract

Retrieval effectiveness is the principal criterion for measuring the performance of an information retrieval system. The effectiveness of a retrieval system depends primarily on the extent to which it can retrieve wanted documents without retrieving unwanted ones. So, ultimately, effectiveness is a function of the relevant and nonrelevant documents retrieved. Consequently, 'relevance' of information to the user's request has become one of the most fundamental concept encountered in the theory of information retrieval. Although there is at present no consensus as to how this notion should be defined, relevance has been widely used as a meaningful quantity and an adequate criterion for measures of the evaluation of retrieval effectiveness. The recall and precision among various parameters based on the 'two-by-two' table (or, contingency table) were major considerations in this paper, because it is assumed that recall and precision are sufficient for the measurement of effectiveness. Accordingly, different concepts of 'relevance' and 'pertinence' of documents to user requests and their proper usages were investigated even though the two terms have unfortunately been used rather loosely in the literature. In addition, a number of variables affecting the recall and precision values were discussed. Some conclusions derived from this study are as follows: Any notion of retrieval effectiveness is based on 'relevance' which itself is extremely difficult to define. Recall and precision are valuable concepts in the study of any information retrieval system. They are, however, not the only criteria by which a system may be judged. The recall-precision curve represents the average performance of any given system, and this may vary quite considerably in particular situations. Therefore, it is possible to some extent to vary the indexing policy, the indexing policy, the indexing language, or the search methodology to improve the performance of the system in terms of recall and precision. The 'inverse relationship' between average recall and precision could be accepted as the 'fundamental law of retrieval', and it should certainly be used as an aid to evaluation. Finally, there is a limit to the performance(in terms of effectiveness) achievable by an information retrieval system. That is : "Perfect retrieval is impossible."

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일