• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

콜론분류법에 바탕한 자동분류시스템의 개발에 관한 연구 - 농학 및 의학 전문도서관을 사레로

Developing an Automatic Classification System Based on Colon Classification: with Special Reference to the Books housed in Medical and Agricultural Libraries


The purpose of this study is (1) to design and test a database which can be automatically classified, and (2) to generate automatic classification number by processing the keywords in titles using the code combination method of Colon Classification(CC) as well as an automatic recognition of subjects in order to develop an automatic classification system (Auto BC System) based on CC which can be applied to any research library. To conduct this study, 1,510 words in the fields of agricultrue and medicine were selected, analized in terms of [P], [M], [E], [S], [T] employed in CC, and included in a database for classification. For the above-mentioned subject fields, the principle of an automatic classification was specified in order to generate automatic classification codes as well as to perform an automatic subject recognition of the titles included. Whenever necessary, editing, deleting, appending and reindexing of a database can be made in this automatic classification system. Appendix 1 shows the result of the automatic classification of books in the fields of agriculture and medicine. The results of the study are summarized below. 1. The classification number for the title of a book can be automatically generated by using the facet principles of Colon Classification. 2. The automatic subject recognition of a book is achieved by designing a database making use of a globe-principle, and by specifying the subject field for each word. 3. The automatic subject-recognition of input data is achieved by measuring the number of searched words by each subject field. 4. The combination of classification numbers is achieved by flowcharting of classification formular of each subject field. 5. The efficient control of classification numbers is achieved by designing control codes on the database for classification. 6. The automatic classification by means of Auto BC has been proved to be successful in the research library concentrating on a Single field. The general library may have some problem in employing this system. The automatic classification through Auto BC has the following advantages: 1. Speed of the classification process can be improve. 2. The revision or updating of classification schemes can be facilitated. 3. Multiple concepts can be expressed in a single classification code. 4. The consistency of classification can be achieved with the classification formular rather than the classifier's subjective judgement. 5. A user's retrieving process can be made after combining the classification numbers through keywords relating to the material to be searched. 6. The materials can be classified by a librarian without subject backgrounds. 7. The large body of materials can be quickly classified by means of a machine processing. 8. This automatic classification is expected to make a good contribution to design of the total system for library operations. 9. The information flow among libraries can be promoted owing to the use of the same program for the automatic classification.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일