• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


본 논문에서는 학습/적응능력을 갖는 퍼지제어시스템들이 여러가지 관점에서 고찰되었다. 먼저, 기존에 제안된 다양한 학습/적응 퍼지제어시스템들의 기본적인 구성요소들을 바탕으로하여 이러한 시스템들의 일반적인 구조를 제안하였다. 그리고 제안된 구조의 중요한 구성요소들을 중심으로 고찰기준을 설정하였다. 고찰기준으로는 퍼지제어기나 퍼지모델 등에 사용되는 퍼지추론시스템의 구조, 학습/적응에 사용되는 퍼지추론시스템의 조정계수와 제어성능 평가함수, 그리고 학습/적응알고리즘을 설정하였다. 다음으로, 이러한 고찰기준들을 바탕으로하여 학습/적응 퍼지제어시스템들을 분류하고 각각의 특징들을 고찰하였다. 마지막으로, 사용된 퍼지추론시스템들의 범용 함수근사화 성질에 대하여도 알아 보았다.


In this paper the fuzzy extension for the classical engineering mechanics problems is studied. The governing differential equation is derived for the buckling loads of the columns with uncertain mediums: the their own weight and the flexural rigidity. The columns with one typical end constraint(hinged1 clarnped/free) and the other finite rotational spring with fuzzy constant are considered in numerical examples. The vertex method is used to evaluate the fuzzy functions. The Runge-Kutta method and Determinant Search method are used to solve the differential equation and determine the buckling loads, respectively. The membership functions of the buckling load are calculated. The index of fuzziness to quantitatively describe the propagation of fuzziness is defined. According to the fuzziness of governing factors, the varlation of index of fuzziness for buckling load is investigated, and the sensitivity for the end constraints is analyzed.

저자의 다른 논문

참고문헌 (50)

  1. Aplication of Fuzzy Algorithm for Control of Simple Dynamic Plant , E.H.Mamdani , Inst. Electr. Eng. / v.121,pp.1569-1588, 1974
  2. C.J.Harris;C.G.Moore;M.Brown , Intelligenct Control / v.,pp., 1993
  3. Indirect adaptive fuzzy control , C.G.Moore;C.J.Harris , Int. J. Control / v.56,pp.441-468, 1992
  4. L.X.Wang;Jerry M. Mendel , Fuzzy Basis Fuctions, Universal Approximation, and Orthogonal Least-Square Learning, IEEE Trans. on Neural Networks / v.3,pp.807-814, 1992
  5. L.X.Wang , Adaptive Fuzzy Systems and Control / v.,pp., 1994
  6. Generating Fuzzy Rules by Learning from Examples , L.X.Wang;Jerry M. Mendel , IEEE Trans. on Syst., Man, Cybern / v.22,pp.1414-1427, 1992
  7. Stable Adaptive Fuzzy Control of Nonlinear System , L.X.Wang , IEEE Trans. on Fuzzy Systems / v.1,pp.146-155, 1993
  8. Fuzzy Identification of Systems and Its Applications to Modeling and Control , T.Takagi;M.Sugeno , IEEE Trans. on Syst., Man, Cybern. / v.SMC-15,pp.116-132, 1985
  9. Interpolation, Completion and Learning Fuzzy Rules , T.Sudkamp;R.J.Hammell Ⅱ , IEEE Trans. on Syst., Man, Cybern / v.24,pp.332-342, 1994
  10. Autotuning Method of Membership Function in a Fuzzy Learning Controller , B.M.Chung;J.H.Oh , Journal of Intellingent and Fuzzy Systems / v.1,pp.335-349, 1994
  11. Genetic Based New Fuzzy Reasoning Models with Application to Fuzzy Control , D.Park;A.Kandel;G.Langholz , IEEE Trans. on SMC / v.24,pp.37-47, 1994
  12. Self-Tuning Fuzzy Inference based on Spline Function , S.Koji;F.Toshio;A.Fumihito , Proc. of IEEE Conf. on Fuzzy Systems / v.,pp.690-695, 1994
  13. A linguistic Self-organizing process controller , T.J.Procyk;E.H.Mandani , Automatica / v.15,pp.15-30, 1979
  14. A Design Study of a Self-organizing Fuzzy Logic Controller , S.Daley;K.F.Gill , Proc. Instn. Mech Engrs. / v.200,pp.59-69, 1986
  15. Rule-based Self-organizing Controller , K.Sugiyama , Fuzzy Computing / v.,pp., 1988
  16. Fuzzy Self-organizing Controller and Its Application for Dynamic Processes , S.Shao , Fuzzy Sets and Systems / v.26,pp.151-164, 1988
  17. Experiments with the use of a rull-based self-organizing controller for robotics application , R.Tanscheit;E.M.Scharf , Fuzzy Sets and Systems / v.26,pp.195-214, 1988
  18. Self-organizing Fuzzy LOgic Control and Application to Muscl Relaxant Anaesthesia , D.A.Linkens;S.B.Hasnei , IEE Proceedings-D / v.138,pp.274-284, 1991
  19. Self-organizing Fuzzy Logic Controller , B.S.Zhang;J.M.Edmunds , IEE Proceedings-D / v.139,pp.460-464, 1992
  20. A Fuzzy Dynamic Learning Controller for Chemical Process Control , J.J.Song;S.Park , Fuzzy Sets and Systems / v.54,pp.121-133, 1993
  21. Adaptive Fuzzy Logic Control , H.Kang;G.Vachtsevanos , Proc. of IEEE Conf. on Fuzzy Systems / v.,pp.407-414, 1992
  22. Learning Fuzzy Logic Control: An Indirect Control Approach , B.H.Wang;G.Vachtsevanos , Proc. of IEEE Conf. on Fuzzy Systems / v.,pp.297-304, 1992
  23. Fuzzy Sliding Model Control of Nonlinear System , C.S.Ting;T.H.Li;F.C.Kung , Proc. of IEEE Conf. on Fuzzy Systems / v.,pp.1620-1625, 1994
  24. Design of Adaptive Fuzzy Sliding Model for Nonlinear Systems Control , S.Lin;Y.Y.Chen , Proc. of IEEE Conf. on Fuzzy Systems / v.,pp.35-39, 1994
  25. Fuzzy Logic for Adaptive Control of Nonlinear Systems , C.Y.Su;Y.Stepanenko , Proc. of Int. Conf. of Intelligent and Fuzzy System / v.,pp.217-227, 1994
  26. Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problems , A.G.Barto;R.C.Sutton;C.W.Anderson , IEEE Trans. SMC / v.13,pp.834-846, 1983
  27. Intelligent Control Based on Fuzzy Logic and Neural Net Theory , C.C.Lee , Int'l Conf. on Fuzzy Logic and Neural Networks / v.,pp.759-764, 1990
  28. On the Integration of Reinforcement Learning and Approximate Reasoning for Control , H.R.Berenji , Proc. 30th Conf. on Decision and Control / v.,pp.1900-1904, 1991
  29. Learning and Tuning Fuzzy Logic Controllers Through Reinforcements , H.R.Berenji;P.Khedkar , IEEE Trans. on Neural Net. / v.3,pp.724-740, 1992
  30. A Study on the AI-based Navigation and Obstacle Detection for Mobile Robots , H.R.Beom , Ph. D. Dissertation, KAIST, Taejon, Korea / v.,pp., 1994
  31. A New Effective Learning Algorithm for a Neo Fuzzy Neuron Model , T.Yamakawa;H.Kusanagi;E.Uchino;T.Miki , Proc. 5th IFSA World Congress / v.,pp.1017-1020, 1993
  32. Control of dynamical processes using an on-line rule-adaptive fuzzy control system , S.Z.He;S.Tan;C.C.Hang , Fuzzy sets and Systems / v.54,pp.11-22, 1993
  33. A Fuzzy Controller Using a Neural Network and its Capability to Learn Experty's Control Rules , S.Horikawa;T.Furuhashi;S.Okuna;Y.Uchikawa , Proc. of the International Conference on Fuzzy Logic and Neural Networks / v.,pp.103-106, 1990
  34. Similarity, interpolation, and fuzzy rule construction , T.Sudkamp , Fuzzy Sets and Systems / v.58,pp.73-86, 1993
  35. B.Kosko , Neural Networks and Fuzzy Systems: A dynamical systems approach to machine intelligence / v.,pp., 1992
  36. Universal Fuzzy Controllers , J.J.Buckley , Automatica / v.28,pp.1254-1248, 1992
  37. Fuzzy Systems as Universal Approximators , B.Kosco , Proc. of 1992 IEEE Conf. on Fuzzy Systems / v.,pp.1153-1162, 1992
  38. Approximation Theory of Fuzzy Systems -SISO Case , X.J.Zeng;M.G.Singh , IEEE Trans. on Fuzzy Systems / v.2,pp.162-176, 1994
  39. A Self-Learning Fuzzy Logic Controller Based on the Principle of Sliding Mode Control , Y.T.Kim;Z.Bien , Proc. of KFMS Fall Conf. '94 / v.4,pp.53-58, 1994
  40. Cao's Fuzzy System with Approximation Capability , J.Gil;D.Park;J.Park , Proc. of KFMS Fall Conf. '94 / v.4,pp.212-217, 1994
  41. Design of Neuro-Fuzzy Inference Engine for Inelligent Sensory Information System , J.Gil;D.Park , Proc. of KFMS Fal Conf. '94 / v.4,pp.298-303, 1994
  42. A Self-Tuning Fuzzy Controller , M.Maeda;S.Murakami , Fuzzy Sets and Systems / v.51,pp.29-40, 1992
  43. A Heuristic Self-Tuning Fuzzy Controller , C.H.Chou;H.C.Lu , Fuzzy Sets and System / v.61,pp.249-264, 1994
  44. Back-Propagation Fuzzy System as Nonlinear Dynamic System Identifiers , L.X.Wang;J.M.Mendel , Proc. of 1992 IEEE Conf. on Fuzzy Systems / v.,pp.1409-1418, 1992
  45. Fuctional Equivalence Between Radial Basis Function Networks and Fuzzy Inference Systems , J.S.Roger;C.T.Sun , IEEE Trans. on Neural Networks / v.4,pp.156-159, 1993
  46. Neural-Network-Based Fuzzy Logic Control and Decision System , C.T.Lin;C.S.G.Lee , IEEE Trans. on Computer / v.40,pp.1320-1336, 1991
  47. Sugeno Type Controllers Are Universal Controllers , J.J.Buckley , Fuzzy Sets and System / v.53,pp.299-303, 1993
  48. Fuzzy Input-Output Controllers Are Universal Approximators , J.J.Buckley;Y.Hayashi , Fuzzy Sets and System / v.58,pp.273-278, 1993
  49. Fuzzy I/O Controller , J.J.Buckley , Fuzzy Sets and System / v.43,pp.127-137, 1991
  50. On the Equivalence of Neural Nets and Fuzzy Expert Systems , J.J.Buckley;Y.Hayashi;E.Czogala , Fuzzy Sets and System / v.53,pp.129-134, 1993

이 논문을 인용한 문헌 (4)

  1. 1997. "A Method of Self-Organizing for Fuzzy Logic Controller Through Learning of the Proper Directioin of Control" 퍼지 및 지능시스템학회 논문지 = Journal of fuzzy logic and intelligent systems, 7(3): 21~33 
  2. 2001. "Design of the Fuzzy Traffic Controller by the Input-Output Data Clustering" 퍼지 및 지능시스템학회 논문지 = Journal of fuzzy logic and intelligent systems, 11(3): 241~245 
  3. Choe, Wan-Gyu ; Jeong, Mun-Jae 2001. "Performance Improvement of the FLC by Membership Function Modification Algorithm" 정보처리학회논문지. The KIPS transactions. Part B. Part B, b8(2): 123~129 
  4. Lim, Chun-Kyu ; Kang, Byung-Wook 2005. "A Fuzzy Agent System to Control the State Transition for an Autonomous Decision Making on Taxi Driving" 정보처리학회논문지. The KIPS transactions. Part B. Part B, b12(4): 413~420 


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일