$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

다층 신경회로망 학습에 의한 정지 영상의 벡터

Vector Quantization Compression of the Still Image by Multilayer Perceptron

초록

본 논문에서는 다층 신경회로망의 일반화 특성을 이용한 새로운 영상 압축 알 고리즘을 제안한다. 제안 알고리즘은 벡터 양자화방식을 이용하여 영상을 몇 개의 클래스로 분류하고 이들을 다층 신경회로망으로 학습한다. 이렇게 학습된 다층신경회 로망은 일반화 특성에 의하여 무 학습의 영상에 대해서도 압축과 복원을 수행 한다. 아울러 벡터 양자화방식에 있어서 벡터 양자화 오차와 수신측에서의 메모리를 감소시 킨다. 본 논문에서는 Lena 영상을 학습 영상으로 하여 이를 16개의 클래스로 나누고 각 클래스를 1개의 다층 신경회로망으로 학습하였다. 그리고 학습에 사용된 Lean 영상 및 무 학습 영상들에 대하여 압축과 복원을 수행하여 우수한 화질의 영상이 복원 되어 짐이 보인다.

Abstract

In this paper, a new image compression algorithm using the generality of the multilaryer perceptron is proposed. Proposed algorithm classifies image into some classes, and trains them through the multilayer perceptron. Multilayer perceptron which trained by the above method can do compression and reconstruction of the nontrained image by the generality. Also, it reduces memory size of the side of receiver and quantization error. For the experiment, we divide Lena image into 16 classes and train them through one multilayer perceptron. The experimental results show that we can get excellent reconstruction images by doing compression and reconstruction for Lena image, Dollar image and Statue image.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일