$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

지식획득, 추론, 지식정제의 통합적 설계를 위한 규칙모델의 구축

Rule Models for the Integrated Design of Knowledge Acquisition, Reasoning, and Knowledge Refinement

초록

전문가시스템의 지식획득, 적합한 추론기구의 설계 및 구현, 지식의 정제 등 다단계 과정으로 이뤄져 있다. 각각을 하나의 연구이슈로 다양한 연구가 진행되어 왔으나 전체를 하나로 연계해 통합적 개발에 관해서는 상대적으로 연구가 활발히 진행되지 못한 실정이다. 지식획득은 전문가에 의해 수행되는 추론과정에서 특징 응용분야의 필요한 지식이 전달되어야 하므로 시식획득과 추론을 서로 밀접한 연관성을 갖는다. 지식의 정제는 추론과정에서 일어나는 문에의 제기와 이의 해결을 통해 지식베이스의 불완전하거나 논리적 모순을 찾아 해결함으로 지식베이스를 보다 완벽하고 정확한 것으로 만드는 것이다. ㅂㄴ 연구에서는 서로 연관된 다단계 과정이 통합적으로 개발될 수 있는 환경의 설저엥 대한 하나의 방안을 제시하려한다. 특히 도메인 모델이 잘 정립되기 어려운 분야에 학습기법을 활용햇 초기 지식 베이스를 구성할 수 있는 점진적 지식획득방법과 이를 통해 만들어진 지식베이스 규칙들을 학습기법의 일종인 개념적 클러스터링 기법을 이용하여 규칙모델을 구축하고 이를 이용해 효율적인 추론이 가능하게 하며, 지식획득 과정에서는 규칙의 오류를 제시할 수 있고 이에 대한 규칙의 수정이나 새로운 규칙이 기존의 지식구조에 합당한지를 결정하는 통합적 설계방안에 대해 연구한다. 지식의 정제는 설명기구와 규칙모델을 활용하여 문제의 원인을 찾고 해결점을 제시해 그에 대한 유효성을 검증합으로 이뤄지게 한다.뤄지게 한다.

Abstract

A number of research issues such as knowledge acquisition, inferencing techniques, and knowledge refinement methodologies have been involved in the development of expert systems. Since each issue is considered very com- plicated, there has been little effort to take all the issues into account collectively at once. However, knowledge acquisition and inferencing are closely reated because the knowledge is extracted by human experts from the inferencing process for solving a specific task or problem. Knowledge refinement is also accomplished by hand-ling problems caused during the inferencing process of the system due to incompleteness and inconsistency of the knowledge base. From this perspecitive, we present a method by which software platform is established in which those issues are integrated in the development of expert systems, especially in the domain where the domain models and concepts are hard to be constructed because of inherent fuzziness of the domain. We apply a machine learning technique,technique, conceptual clustering,to build a knowledge base and rual models by which an efficient inferencing,incermental knp\owledge acquisition and refinment are possible.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (1)

  1. Lee, Gyesung 2002. "An Approximate Evidence Combination Scheme for Increased Efficiency" 정보처리학회논문지. The KIPS transactions. Part B. Part B, b9(1): 17~22 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일