$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

ART-1 신경망을 이용한 온라인 한자 인식

On-line Recognition of Chinese Characters Based on ART-l Neural Network

Abstract

In this paper, we propose an on-line recognition system of chinese characters using an adaptive resonance theory-1(ART-1) neural network. Strokes, primitive components of chinese characters are usually warped into a cursive form and classifying them is very difficult. To deal with such cursive strokes, we use an ART-1 neural network that has the following advantages: (1) it automatically assembles similar patterns together to form classes in a self-organized manner: (2) it directly accesses the recognition codes corresponding to binary input patterns after self-stabilizing; (3) it doesn't tends to get trapped in local minima, or globally incorrect solutions. A database for character recognition also dynamically constructed with generalized character lists, and a new character can be included simply by adding a new sequence to the list. Character recognition is achieved by traversing the chinese datbase with a sequence of recognized strokes and positional relations between the strokes. To verify the performance of the system. We tested it for 1800 daily-used basic chinese second per character. This results suggest that the proposed system is pertinent to be put into practical use.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일