$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

동적인 교차 및 동연변이 확률을 갖는 균일 교차방식 유전 알고리즘

A genetic algorithm with uniform crossover using variable crossover and mutation probabilities

Abstract

In genetic algorithms(GA), a crossover is performed only at one or two places of a chromosome, and the fixed probabilities of crossover and mutation have been used during the entire generation. A GA with dynamic mutation is known to be superior to GAs with static mutation in performance, but so far no efficient dynamic mutation method has been presented. Accordingly in this paper, a GA is proposed to perform a uniform crossover based on the nucleotide(NU) concept, where DNA and RNA consist of NUs and also a concrete way to vary the probabilities of crossover and mutation dynamically for every generation is proposed. The efficacy of the proposed GA is demonstrated by its application to the unimodal, multimodal and nonlinear control problems, respectively. Simulation results show that in the convergence speed to the optimal value, the proposed GA was superior to existing ones, and the performance of GAs with varying probabilities of the crossover and the mutation improved as compared to GAs with fixed probabilities of the crossover and mutation. And it also shows that the NUs function as the building blocks and so the improvement of the proposed algorithm is supported by the building block hypothesis.

저자의 다른 논문

참고문헌 (18)

  1. J. H. Holland , Adaptation in Natural and Artificial Systems / v.,pp., 1975
  2. D. E. Goldberg , Genetic Algorithms in Search, Optimization, and Machine Learning / v.,pp., 1989
  3. Convergence analysis of canonical genetic algorithms , G. Ruldolph , IEEE Trans. on Neural Networks / v.5,pp.96-101, 1994
  4. Experimental results from an evaluation of algorithms that learn to control dynamic systems , C. Sammut , Proc. of 5th Int. Conf. on Machine Learning / v.,pp.437-443, 1988
  5. 인공진화에 의한 학습 및 최적화 , 장병탁 , 제어 · 자동화 · 시스템공학회지 / v.1,pp.52-61, 1995
  6. Adaptive distributed routing using evolutionary fuzzy control , B. Carse;T. C. Fogarty;A. Munro , Proc. of 6th Int. Conf. on Genetic Algorithms / v.,pp.389-396, 1995
  7. Combinatorial optimization with use of guided evolutionary simulated annealing , P. P.C. Yip;Y. -H. Pao , IEEE Trans. on Neural Networks / v.6,pp.290-295, 1995
  8. A genetics based hybrid scheduler for generating static schedules in flexible manufacturing contexts , C. W. Holsapple;V. S. Jacob;R. Pakath;J. S. Zaveri , IEEE Trans. on SMC / v.23,pp.953-972, 1993
  9. Guest editorial evolutionary computation , D. B. Fogel;L. J. Fogel , IEEE Trans. on Neural Networks / v.5,pp.1-2, 1994
  10. Z. Michalewicz , GENETIC ALGORITHMS + DATA STRUCTURES = EVOLUTION PROGRAMS / v.,pp., 1992
  11. D. Ackley , A Connectionist Machine for Genetic Hillclimbing / v.,pp., 1987
  12. Uniform crossover in genetic algorithms , G. Syswerda , Proc. of 3rd Int. Conf. on Genetic Algorithms / v.,pp.2-9, 1989
  13. On the virtues of parameterized uniform crossover , W. M. Spears;K. A. De Jong , Proc. of 4th Int. Conf. on Genetic Algorithms / v.,pp.230-236, 1991
  14. Adaptive crossover in evolutionary algorithm , W. M. Spears , Proc. fo 4th Evolutionary Programming / v.,pp.367-384, 1995
  15. Optimal mutation rates in genetic search , T. Back , Proc. of 5th Int. Conf. on Genetic Algorithms / v.,pp.2-8, 1993
  16. An Experimental comparison of binary and floating point representation , C. Z. janikow;Z.Michalewitz , Proc. of 4th Int. Conf. on Genetic Algorithms / v.,pp.31-36, 1991
  17. An emergence of fuzzy control rules for mobile robots using DNA coding method , T. Yoshikawa;T. Furuhashi;Y. Uchikawa , Proc. of Int. Symposium on Artificial Life and Robots / v.,pp.162-165, 1996
  18. R. H. Cannon Jr. , Dynamics of Physical Systems / v.,pp., 1967

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일