$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

변환영역에서의 지능형 분류벡터양자화를 이용한 영상압축

Image Compression using an Intelligne Classified Vector Quantization Method in Transform Domain

초록

이 논문에서는 영상데이터를 여러개의 영상블록들로 나누고 이산 코사인변환 영역에서 물체의 에지에 해당하는 영상블록을 에지방향을 고려하여 적절히 분류함으로써 영상데이터를 효과적을 압축하였다. 벡터양자화에 의한 영상데이터의 압축은 높은 압축률을 실현할 수 있지만 영상내 물체의 에지부근이 손상되어 시각적인 화질이 저하되는 단점이 있다. 높은 압축률을 유지하면서도 시각적인 화질의 열화를 피하기 위하여 영상블록의 이산 코사인변환계수의 에너지 분포에 따라 에지블록을 8개의 부류로 분류하였다. 또한 이 분류과정을 통하여 얻어진 데이터를 가지고 신경회로망을 학습하여 구현한 에지블록의 분류과정과 성능을 비교하였다. 에너지분포에 의한 에지분류방법과 신경망으로 학습한 분류과정은 에지특성벡터에 의한 분류벡터양자화에 비해 더 높은 PSNR과 시각적으로 좋은 화질을 보여주었다.

Abstract

This paper presents image data compression using a classified vector quantization (CVQ) which categories edge blocks according to the energy distribution of subimages in the discrete cosine transform domain. Classifying the edge blocks enhances visual quality of the compressed images while maintaining a high compression ratio. The proposed classification method categories subimages into eight lypes of edge features according to an energy distribution. A neural network, trained with the data generated from the proposed classification method, can successfully classify subimages to eight edge categories. Experimental results are given to show how the (1VQ method incorporatd with a neural network can produce faithful compressed image quality for high compression ratios.

저자의 다른 논문

참고문헌 (10)

  1. B.Kosko , Neural Networks and Fuzzy Systems / v.,pp., 1992
  2. Image Vector Quantizer Based on a Classification in the DCT Domain , D.S.Kim;S.U.Lee , IEEE Trans. on Communications / v.39,pp.549-556, 1991
  3. Classified Transform Coding of Images Using Vector Quantization , Yo-Sung Ho;Allen Gersho , Proc. of ICASSP / v.,pp.1890-1893, 1989
  4. J.M.Zurada , Introduction to Artificial Neural Systems / v.,pp., 1992
  5. An algorithm for vector quantizer design , Y.Linde;A.Buzo;R.M.Gray , IEEE Trans. on Comm. / v.COM-28,pp.84-95, 1980
  6. Vector Quantization , R.M.Gray , IEEE ASSP Magazine / v.1,pp.4-29, 1984
  7. Adaptive coding of monochrome and color images , W.H.Chen;C.H.Smith , IEEE Trans. on Comm. / v.COM-25,pp.1285-1292, 1977
  8. K.R.Rao;P.Yip , Discrete Cosine Transform - Algrithm, Advantage, Applications / v.,pp., 1990
  9. Classified vector quantization of images , B.Ramamurthi;A.Gersho , IEEE Trans. on Comm. / v.COM-34,pp.1105-1115, 1986
  10. A.Gersho;R.M.Gray , Vector Quantization and Signal Compression / v.,pp., 1991

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일