$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

진화연산을 이용한 동적 귀환 신경망의 구조 저차원화

Structure Pruning of Dynamic Recurrent Neural Networks Based on Evolutionary Computations

초록

본 논문에서는 진화연산을 이용하여 동적 귀환 신경망의 구조를 저차원화하는 방법을 제안한다. 일반적으로 진화연산을 개체군을 이용한 탐색 방법으로서 신경회로망의 여러 가지 다른 성질을 동시에 최적화할 필요가 있을 때 유용한 방법이다. 본 연구에서는 동적 귀환 신경망의 구조를 조차원화하기 위하여 진화 프로그래밍으로 신경망의 구조를 탐색하고, 진화전략으로 신경망의 연결강도를 학습시킴으로서 전체적인 구조를 저차원화하였다.신경망의 중간층 노드의 추가/삭제는 돌연변이 확률에 의하여 결정한다. 노드를 삭제할 경우에는 입력 연결강도의 총합이 가장 작은 노드를 삭제하고, 노드를 추가할 경우에는 미리 지정한 확률함스에 따라 노드를 추가한다. 그리고 추가된 노드와 다른 노드와의 연결방법은 서로 영향을 미칠 수 있는 모든 연결강도 중에서 확률적으로 선택하여 연결하였다. 마지막으로 제안한 저차원화 동적 귀환 신경망이 완전 연결된 신경망보다 더 좋은 성능을 얻을 수 있음을 예제로서 본 논문에서는 도립진자의 안정화 및 제어와 로봇 매니퓰레이터의 비주얼 서보잉에 적용하여 컴퓨터 시뮬레이션을 통하여 그 유효성을 확인한다.

Abstract

This paper proposes a new method of the structure pruning of dynamic recurrent neural networks (DRNN) using evolutionary computations. In general, evolutionary computations are population-based search methods, therefore it is very useful when several different properties of neural networks need to be optimized. In order to prune the structure of the DRNN in this paper, we used the evolutionary programming that searches the structure and weight of the DRNN and evolution strategies which train the weight of neuron and pruned the net structure. An addition or elimination of the hidden-layer's node of the DRNN is decided by mutation probability. Its strategy is as follows, the node which has mhnimum sum of input weights is eliminated and a node is added by predesignated probability function. In this case, the weight is connected to the other nodes according to the probability in all cases which can in- 11:ract to the other nodes. The proposed pruning scheme is exemplified on the stabilization and position control of the inverted-pendulum system and visual servoing of a robot manipulator and the effc: ctiveness of the proposed method is demonstrated by numerical simulations.

저자의 다른 논문

참고문헌 (10)

  1. Pruning Recurrent Neural Networks for Improved Generalization Performance , C.L.Giles;C.W.Omlin , IEEE Tranc. Neural Networks / v.5,pp.848-851, 1994
  2. Learning Scheme for Recurrent Neural Network by Genetic Algorithm , T.Fukuda;T.Kohno;T.Shibata , 日本機械學會論文集 / v.59,pp.34-40, 1993
  3. A Pruning Method of Recurrent Neural Networks , H.Nishida;Y.Matsumoto;Y.Yamamoto , 日本計測自動制御學會論文集 / v.32,pp.379-388, 1996
  4. 저차원화된 리커런트 뉴럴 네트워크를 이용한 비주얼 서보잉 , 김대준;이동욱;심귀보 , 한국퍼지 및 지능 시스템학회 춘계학술대회 논문집('97 KFIS) / v.,pp.259-262, 1997
  5. 진화연산을 이용한 리커런트 뉴럴 네트워크의 저차원화에 대한 연구 , 김대준;이동욱;심귀보 , 로보틱스 · 제어계측 · 자동화 종합학술대회 / v.,pp.28-31, 1997
  6. An Evolutionary Algorithm that Constructs Recurrent Neural Networks , P.J.Agline;G.M.Saunders;J.B.Pollack , IEEE Tranc. Neural Networks / v.5,pp.54-64, 1994
  7. Chin-Teng Lin;C.S.George Lee , Neural Fuzzy Systems / v.,pp., 1996
  8. 유전 알고리즘을 이용한 전방향 신경망 제어기의 구조 최적화 , 조철현;공성근 , 전자공학회 논문지 / v.33-B,pp.95-105, 1996
  9. Z.Michalewicz , Genetic Algorithms+Data Strutures=Evolution Programs(3rd ed.) / v.,pp., 1995
  10. 진화전략을 이용한 도립진자의 안정화 및 위치제어 , 이동욱;심귀보 , 한국퍼지 및 지능 시스템학회 논문지 / v.,pp.71-79, 1996

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일