$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

현미 세 면(윗면, 측면, 앞면)의 화상을 이용한 품종 판별

Identification of Rice Species by Three Side (Top, Side and Front) Images of Brown Rice

초록

국산 19품종의 현미(40점)를 대상으로 현미 1알로부터 3개의 화상(윗면, 측면, 앞면)의 9개 화상특성(면적, 장단축비, 장축길이, 단축길이, 둘레길이, 원형도, 적색도, 녹색도, 청색도), 도합 27개 화상특성을 측정하여 품종 판별을 시도하였다. 판별식의 도출과 검증을 위하여 현미 시료 1점당 각각 105알과 20알이 사용되었다. 현미의 화상특성 중 윗면 화상, 측면 화상에서의 면적, 장단축비, 장축길이, 단축길이, 둘레, 원형도, 앞면 화상에서의 면적, 둘레는 품종 간 차이가 큰 특성이었다. 27개 화상 특성중 판별에 기여율이 가장 낮은 앞면 화상의 둘레길이, 측면 화상의 원형도, 윗면의 둘레길이를 제외한 24개 화상특성을 사용하였을 때 84.75%로 가장 판별율이 높았다. 품종 판별율은 품종 농안의 경우 최고 99.05%, 화성의 경우 최저 50.63%로 품종 간 차이가 많았다. 품종 판별식을 검증한 결과 평균 84.93%의 품종 판별율을 보였으며, 농안과 팔공의 경우 최고 100%, 화성의 경우 최저 47.62%의 품종 판별율을 보였다. 이 결과, 단지 화상분석에 의한 품종 판별율은 품종에 따라 커다란 차이가 있어 전체 품종 판별에는 적합하지 않은 것으로 사료되었다. 좀더 신뢰성 있는 품종 판별을 위해서는 화상분석 이외에 품종이 지닌 고유의 특성을 분석하는 다른 판별분석법도 병행하여 사용되어야 할 것이다.

Abstract

Identification of rice species was attempted by three side (top, side and front) images of brown rice. Nine parameters of each image were area, aspect ratio, maximum diameter, minimum diameter, perimeter, roundness and red (R), green (G) and blue (B) pixel values of an image. Forty rice samples consisted of 19 species used for the study and total 27 image characteristics for a kernel were measured. For calibration and confirmation, 105 and 20 brown rice kernels per each sample were used respectively. For best identification of rice species, 24 image characteristics were selected for discriminant analysis. Average percentages for correct identification of rice species were 84.75% and 84.93% for calibration and confirmation data set, respectively. The highest and lowest percentage for correct identification were 99.05% for Nongan and 50.63% for Hwaseung respectively in calibration data. The confirmation data showed that the correct identification of Nongan or Paalgong was 100%, while that of Hwaseung was 47.62%. The result of the study showed that three side (top, side and front) image of brown rice was not suitable for identification of rice species suggesting that additional techniques are required for better discrimination of rice species.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일