$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

대두발효식품 Cerebroside의 구성성분 분석 및 비교

Analysis and Comparison of Cerebroside Components from Soybean Fermented Foods

초록

대두 및 대두발효식품인 청국장과 된장의 cerebroside 구성성분인 지방산, 당 및 장쇄 sphingoid base들을 GC-MS로 분석하였다. Cerebroside 산-가수분해물의 지방산들을 O-TMS methylester 유도체로 만들어 분석하였으며 대두 및 청국장의 경우 2-hydroxyhexadecanoic acid(16 : 0h)가 각각 52.2% 및 62.0%로 가장 많았고 2-hydroxydocosanoic acid(22 : 0h) 및 2-hydroxytetracosanoic acid(24 : 0h)도 15.0~17.6%이었다. 그러나 된장의 경우 16 : 0h는 10.2%로 많은 감소를 보인 반면 24 : 0h는 40.9%, 22 : 0h는 23.4% 었으며 23 : 0h, 25 : 0h 및 26 : 0h도 대두 및 청국장에 비하여 많았다. Cerebroside 산-가수분해물의 장쇄 sphingoid base들은 N-acetyl-O-TMS 유도체로 분석하였으며 대두 및 청국장에서 4- trans, 8-trans-sphingadienine (d18 : 2 $\Delta$$^{4trans, 8trans}$) 는 59.9% 및 44.5%이었으며 4-hydroxy-8-trans, cis-sphingening (t18 : 1$\Delta$$^{8trans or cis}$)는 20.9% 및 35.9% 이었고 된장 cerebroside 역시 dl8 : 2$\Delta$$^{4trans, 8trans}$가 가장 많았다. 그러나 phytosphingosine(t18 : 0) 및 sphingosine 이 성질체(d18 : 1)들은 거의 보이지 않았다. 또한 된장의 경우 오랜 기간 미생물들에 의하여 발효되었지만 Aspergillus 속들의 cerebroside가 가지는 것으로 알려진 2-hydroxyoxtadec-3-enoic acid(18 : 1h) 및 9-methyl-4,8-sphingadienine 등은 발견되지 않았다. 대두, 청국장 및 된장 cerebroside의 당유도체 mass spectrum 분석 결과 99%이상이 glucose 1번 탄소가 ceramide backbone에 결합된 monoglucocerebroside 인 것으로 나타났다.

Abstract

Cerebroside fatty acids, sugars and long-chain sphingoid bases in raw soybean and soybean fermented foods (chongkukjang and deunjang) were analyzed using gas chromatography-mass spectrometry (GC-MS) and high-pH anion exchange chromatography with pulsed amerometric detection (HPAEC-PAD). Fatty acids of acid-hydrolyzed cerebrosides were derivatized to O-TMS methylester and analysed. The major fatty acids in raw soybean and chongkukjang cerebrosides were identified as 2-hydroxyhexadecanoic acid (16 : 0h), 2-hydroxydocosanoic acid (22 : 0h) and 2-hydroxytetracosanoic acid (24 : 0h). In the case of deunjang cerebroside, 24 : 0h (40.9%) and 22 : 0h (23.4%) were major fatty acids, but 16 : 0h, 23 : 0h, 25 : 0h and 26 : 0h were also detected. Long-chain sphingoid bases of acid-hydrolyzed cerebrosides from raw soybean, chongkukjang and deunjang consisted primarily of 4-tracts, 8-tracts-sphingadienine (dihydroxy base, d18 : 2$\Delta$$^{4trans, 8trans}$) and sis-tracts isomers of 4-hydroxy-sphingenine (trihydroxy base, tl8:1$\Delta$$^{4trans or cis}$) with much less amounts of phytosphingosine (tl8: 0) and isomers of sphingenine (d18 : 1). Although deunjang is a soybean food fermented by fungi and microorganisms for a long period, 2-hydroxyoctadec-3-enoic acid (18 : 1h) and branched 9-methyl-4,8-sphingadienine known as compositional cerebroside fatty acids in Aspergillus species were not detected. Mass spectrum for sugar derivatives in cerebrosides of soybean foods including raw soybean and fermented soybean showed that C-1 of glucose moiety was linked to ceramide backbone as like a monoglucosylceramide.

저자의 다른 논문

참고문헌 (26)

  1. Kolter T, Doering T, Wilkening G, Werth N, Sandhoff K. 1999. Recent advances in the biochemistry of glycosphingolipid metabolism. Biochem Soc Transact 27: 409-415. 
  2. Kolter T, Sanhoff K. 1999. Sphingolipids-their metabolic pathways and the pathobiochemistry of neurodegenerative disease. Angew Chem Int Ed 38: 1532-1568. 
  3. Merrill AH Jr, Liotta DC, Ronald TR. 1996. Fumonisins : fungal toxins that shed light on spningolipid function. Trans in Cell Biology 6: 218-223. 
  4. Karlsson KA, Samuelsson BE, Steen GO. 1973. Separation of monoglycosylceramides (cerebrosides) of bovine kidney into subgroups and characterization by mass spectrometry. Biochim Biophys Acta 306: 317-328. 
  5. Ohnishi M, Fujino Y. 1982. Sphingolipids in immature and mature soybeans. Lipids 17: 803-810. 
  6. Ohnishi M, Fujino Y, Ito S. 1980. Structure and composition of plant sphingosine. Proc Jpn Con Biochem Lipids 22: 379-382. 
  7. Fujino Y, Ohnishi M, Ito S. 1985. Molecular species of ceramide and mono-, di-, tri- and tetraglycosylceramide in bran and endosperm of rice grains. Agric Biol Chem 49: 2753-2762. 
  8. Mano Y, Kawaminami K, Kojima M, Ohnishi M, Ito S. 1999. Comparative composition of brown rice lipids of Indica and Japonica rices. Biosci Biotechnol Biochem 63: 619-626. 
  9. Merrill AH Jr, Schmelz EM, Dillehay DL, Sphiegel S, Shayman JA, Schroeder JJ, Riley RT, Voss KA, Wang E. 1997. Sphingolipids - the enigmatic lipid class. Toxicol Appl Pharmacol 142: 208-225. 
  10. Hakomori S. 1981. Glycosphingolipids in cellular interaction, differentiation and oncogenesis. Annu Rev Biochem 50: 733-764. 
  11. Hannun YA, Linardic CM. 1993. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochim Biophys Acta 1154: 223-236. 
  12. Bell RM, Hannun YA, Merrill AH Jr. 1993. Sphingolipids, Part A : Functions and breakdown products. In Advances in lipid research. Academic Press, San Diago, CA. Vol 25, p 336-365. 
  13. Schmelz EM, Dillehay DL, Webb SK, Reiter A, Adams J, Merrill AH Jr. 1996. Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2-dimethylhydrazine: implications for dietary sphingolipids and colon carcinogenesis. Cancer Res 56: 4936-4941. 
  14. Schmelz EM, Dombrink-Kurtman MA, Roberts PC, Kozutsumi Y, Kawasaki T, Merrill AH Jr. 1998. Induction of apoptosis by fumonisin B1 in HT29 cells is mediated by the accumulation of endogenous free sphingoid bases. Toxicol Appl Pharm 148: 252-260. 
  15. Dillehay DL, Webb SJ, Schmelz EM, Merrill AH Jr. 1994. Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J Nutr 124: 615-620. 
  16. Sullards MC, Lynch DV, Merrill AH Jr, Adams J. 2000. Structure determination of soybean and wheat glucosylceramides by tandem mass spectrometry. J Mass Spectrom 35: 347-353. 
  17. Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH Jr. 1999. Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129: 1239-1250. 
  18. Song SK, Kim KH, Kim HS. 2001. Cytotoxic effects and components of lipid fractions from soybean products on cancer cell lines. J Korean Soc Food Sci Nutr 30: 1266-1271. 
  19. Folch J, Lee M, Sloan-Stanly HS. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497-509. 
  20. Cahoon EB, Lynch DV. 1991. Analysis of glucocerebrosides of Rye leaf and plasma membrane. Plant Physiol 95: 58-68 
  21. 蕂野安彦. 1980. 脂質分析法入門. 生物化學實驗法 9. 學會出版センタ-, 日本. p 91-98. 
  22. Kean EL. 1996. Separation of gluco- and galactocerebrosides by means of borate thin-layer chromatography. J Lipid Res 7: 449-452. 
  23. Toledo MS, Levery SB, Straus AH, Suzuki E, Momany M, Glushka J, Moulton JM, Takahashi HK. 1999. Characterization of sphingolipids from mycopathogens: factors correlating with expression of 2-hydroxy fatty acyl (E)-delta-3-unsaturation in cerebrosides of Parcoccidioides brasiliensis and Aspergillus fumigatus. Biochemistry 38: 7294-7306. 
  24. Fujino Y, Ohnishi M. 1976. Structure of cerebroside in Aspergillus oryzae. Biochim Biophys Acta 486: 161-171. 
  25. Boas MH, Egge H, Pohlenta G, Hartmann R, Bergter EB. 1994. Structural determination of N-2'-hydroxyoctadecenoyl-1-O-beta-D-glucopyranosyl-9-methyl-4,8-sphing adienine from species of Aspergillus. Chem Phys Lipids 70: 11-19. 
  26. Fujino Y, Ohnishi M. 1983. Sphingolipids in wheat grain. J Cereal Sci 1: 159-168. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일

"" 핵심어 질의응답