$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

어리호박벌, 쇠측범잠자리, 넓적사슴벌레의 날개근육의 형태학적 차이

Morphological Differences of the Flight Muscle among Xylocopa appendiculata circumvolans Smith, Davidins lunatus B. and Serrognathus platymelus castanicdor M.

초록

비행량과 비행형태가 다른 곤충 날개근육의 차이를 형태학적 관점에서 알아 보고자 어리호박벌 (벌목, 꿀벌과), 쇠측범잠자리 (잠자리목, 부채장수잠자리과), 넓적사슴벌레(딱정벌레목, 사슴벌레과)의 3종을 실험에 이용하였다. 실험군은 광학현미경적 방법, 투과전자현미경적 방법, 입체해석학적 방법을 이용하여 다음과 같은 결과를 얻었다. 광학현미경적 관찰 결과, 비행량이 많은 어리호박벌은 매우 규칙적인 분포를 나타내는 근원세사 사이에서 많은 수의 사립체가 관찰되었고, 근절도 짧게 나타났다. 쇠측범잠자리는 근절이 길어 어리호박벌과 비행형태의 차이가 있음을 반영했다. 날개근육을 거의 사용하지 않는 넓적사슴벌레는 사립체가 거의 관찰되지 않았고, 근절은 매우 길게 나타났다. 전자현미경적 관찰 결과, 어리호박벌과 넓적사슴벌레에서 적은 수의 근형질세망과 가로소관이 관찰되었고, 쇠측범잠자리에서는 근형질세망이 많이 분포하였으며 지방소적이 많이 관찰되었다. 입체해석학적 관찰 결과, 근원섬유의 체적밀도는 넓적사슴벌레에서 가장 높았으며, 어리호박벌, 쇠측범잠자리의 순으로 낮게 나타났다. 사립체의 체적밀도는 어리호박벌에서 가장 높았으며, 근형질세망의 체적밀도는 쇠측범잠자리에서 가장 높게 관찰되었다. 사립체의 수밀도는 어리호박벌에서 가장 높았다. 따라서 비행량과 비행형태에 따른 곤충 날개근육의 형태학적 차이는 운동량과 운동형태에 영향을 미치는 서식습성에 의해 변화되는 것으로 나타났다.

Abstract

The present study was performed to compare the morphological differences of flight muscles among 3 species from insects (Xylocopa appendiculata circumvolans Smith, Davidins lunatus B. and Serrognathus platymelus castanicdor M.) by investigating ultrastructural observation and stereological analysis. Xylocopa appendiculata circumvolans Smith has the most flight hours. In addition, the number and arrangement of mitochondria and the structure of sarcomere were similar to those of vertebrates. However sarcomere structure of Davidins lunatus B. was irregular and the sarcomere length was longer than that of Xylocopa appendiculata circumvolans Smith. In Serrognathus platymelus castanicdor M. which has the least flight hours, the length of sarcomere appeared longer than that of Davidins lunatus B. In results of stereological analysis, Serrognathus platymelus castanicdor M. had the highest volume density of myofibrils in all species. The volume and numerical density of mitochondria and the volume density of sarcoplasmic reticulum were highest Xylocopa appendiculata circumvolans Smith and Davidins lunatus B. respectively. This study suggests that the flight hours and flight pattern by different ecological habitats may cause the morphological changes of flight muscle.

참고문헌 (33)

  1. Bae YJ, Lee SY, Lee WK: Insects' life in Korea, Apterygota, Exopteraygota(in part), Aquatic insects. I. pp . 56, 1998 
  2. Borror et al.: An introduction to the study of insect. 5th, pp.51 71, 1981 
  3. Candia Carnevali MD, Reger JF: Slow acting flight muscles of saturniid moths. J Ultrastruct Res 79 :241 249, 1981 
  4. Chapman RF: The insects; structure and function. The English University Press, pp . 243 273, 1980 
  5. Deatherage JF, Cheng NQ, Bullard B: Arrangement of filaments and cross links in the bee flight muscle Z disk by image analysis of oblique sections. J Cell Biol 108(5): 1775 1782, 1989 
  6. Delcarpio JB, Baerwald RJ, Magnuson LJ: Multiple SR T tubule junctions in a single insect flight muscle fiber. J Ultrastruct Res 84: 151 160,1983 
  7. Eisner, Thomas, Wilson, Edward Osborne: The flight muscles of insects, Printed in the United States of America, pp . 41 49, 1977 
  8. Hagopian M, Spiro D: The sarcoplasmic reticulum and its association with the T system in an insect. J Cell BioI 32(3):535 545,1967 
  9. Harrison JF, Roberts SP: Flight respiration and energetics. Annu Rev Physiol 62: 179 205, 2000 
  10. Josephson RK: Contraction dynamics of flight and stridulatory muscles of tettigoniid insects, J Exp BioI 108: 77 96, 1984 
  11. Josephson RK, Ellington CP: Power output from a flight muscle of the bumblebee bombus terrestris. I. Some features of the dorso ventral flight muscle. J Exp BioI 200 :1215 1226,1997 
  12. Josephson RK, Malamud JG, Stokes DR: Power output by an asynchronous flight muscle from a beetle, J Exp BioI 203: 2667 2689, 2000 
  13. Kim JI, Lee SY, Lee WK: Insects' life in Korea, Coleoptera III. pp. 36 37,1998 
  14. Lee JW, Lee SY, Lee WK: Insects' life in Korea. Hymenoptera, Diptera, Mecoptera, Neuroptera, Dermaptera IV, pp. 123, 1998 
  15. Loud AV, Anversa P, Giacomelli F, Wiener J: Absolute morphocetric study of myocardial hypertrophy in experimental hypertension.I. Determination of myocytesize. Lab Invest 38:586 596, 1978 
  16. Mandelshtam luE, Nasledov GA: Functional features of the locomotor muscles of the locust, Neirofiziologiia 9(5) : 532 538, 1977 
  17. Malamud JG, Mizisin AP, Josephson: The effects of octopamine on contraction kinetics and power output of a locust flight muscle, J Comp Physiol A 162: 827 835, 1988 
  18. Marden JB: Variability in the size, composition, and function of insect flight muscles, Annu Rev Physiol 62 : 157 178, 2000 
  19. Mizisin AP, Ready NE: Growth and development of flight muscle in the locust(Schistocereca nitens Thiinberg), J Exp Zool 237:45 55, 1986 
  20. Otten E: Optimal design of vertebrate and insect sarcomeres. J MorphoI 191(1):49 62,1987 
  21. Park GA, Lee WT, Park MK, Lee JE: Basic Histology. Korea Medical Publishing Co. pp. 257 283, 1992 
  22. Park WH, Chung HJ, Kim DH: Effect of chlorambucil on cardiac ultrastructure of mouse. Korean J Electron Microscopy 16(1):47 62, 1989. (Korean) 
  23. Richards OW, Davies RG: Imms' general textbook of entomology. volume 1. Structure, physiology and development, pp. 86 93,1979 
  24. Ross HH et al.: A textbook of entomology. 4th, pp. 170 173,1982 
  25. Royuela M, Fraile B, Arenas MI, Paniagua R: Characterization of several invertebrate muscle cell types; a comparison with vertebrate muscle. Microsc Res Tech 41 : 107 115, 2000 
  26. Smith DS: The flight muscles of insect. pp. 41 49,1965 
  27. Trombitas K, Pollack GH: Visualization of the transverse cytoskeletal network in insect flight muscle by scanning electron microscopy. Cell Motil Cytoskeleton 32(3): 226 232, 1995 
  28. Trombitas K, Tigyi Sebes A: Insect Flight Muscle. Elsevier, Amsterdam, pp. 79 90, 1977 
  29. Trombitas K, Tigyi Sebes A: The continuity of thick filaments between sarcomeres in honey bee flight muscle. Nature 27 : 281(5729) : 319 320, 1979 
  30. Trombitas K, Tigyi Sebes A: Cross bridge interaction with oppositely polarized actin filaments in double overlap zones of insect flight muscle, Nature 309(5964) : 168 170, 1984 
  31. Van der Horst DJ, Van Doorn JM, Passier PC, Vork MM, Glatz JF: Role of fatty acid binding protein in lipid metabolism of insect flight muscle. Mol Cell Biochem 123(12) : 145 152, 1993 
  32. Wegener G: Flying insects: model systems in exercise physioloy. Experientia 52(5) : 404 412, 1996 
  33. Wells DJ, Ellington CP: Beyond the vertebrates: achieving maximum power during flight in insects and hummingbirds. Adv Vet Sci Comp Med 38B : 219 232, 1994 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • Korea Open Access Journals : 저널

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일