위성원격탐사에 의한 동한난류 주변 해역의 색소농도 공간적 분포 -1980년 5월 관측을 중심으로
Spatial Distribution of Pigment Concentration Around the East Korean Warm Current Region Derived from Satellite Data - Satellite Observation in May 1980 -
동한난류 주변 해역의 해색전선과 수온전선의 공간적 분포 특성을 CZCS와 AVHRR 위성자료를 이용하여 살펴보았다. 동한난류 주류의 난수 streamer 주변 해역의 색소농도와 SST의 공간적 분포를 살펴본 결과, 식물플랑크톤의 흡수보다는 황색물질이나 용존유기물질과 같은 부유물질에 의해 높은 색소농도를 나타낸 연안냉수해역, 연안의 부유물질에 의한 영향과 식물플랑크톤에 의한 영향이 혼합된 특성이 나타난 색소농도가 높은 수온전선의 냉수해역, 외해수의 특성과 유사한 순수한 식물플랑크톤의 영향에 의해 색소농도가 높은 난수중첩해역, 식물플랑크톤의 홉수에 의해 지배를 받고 있으나 색소농도가 적은 난수해역, 식물플랑크톤의 흡수에 의한 영향으로 색소농도가 높은 외해해역의 5개 범주로 구분할 수 있었다. 동해안을 따른 연안냉수해역의 높은 색소농도의 확장은 동한난류의 흐름에 크게 영향을 받고 있으며, 동한난류의 난수 내부에 있는 낮은 색소농도와 분리된다. 또한, 동한난류해역 주변의 색소 농도와 SST 사이의 관계는 전체적으로, 색소농도가 높은 곳은 수온이 낮은 곳에 나타나고 있으며, 색소농도가 낮은 곳은 수온이 높은 곳에서 나타났다. 색소농도가 가장 높게 나타난 것은 수온전선해역 냉수쪽에서 가장 높은 550nm 반사와 비교적 높은 443nm 흡수와 일치하는 일반적인 연안수와 같이 식물플랑크톤 단독으로 나타나는 것이 아니라 부유물질과 동시에 나타났다. 그리고, 또 다른 색소농도의 높은 농도가 외해수에서 나타난 것과 유사하게 난수 streamer 내부에서 나타났으며, 이것은 연안의 부유물질의 영향은 거의 받지 않은 식물플랑크톤에 의해 색소농도가 높은 것을 알았다. 동한난류 해역과 같이 색소농도가 높은 해역에서 SST와 색소농도 영상만으로 복잡한 물리 생물학적인 현상에 기인한 모든 현상을 이해하기는 어렵지만, 광범위한 해역에서 이러한 현상을 이해하는데 위성자료는 효과적인 수단으로 판단된다. 또한, 현재 운용중인 NASA의 Seastar에 탑재된 SeaWiFS (Sea-viewing Wide Field-of·view Sensor)에 의한 보다 정확한 식물플랑크톤 색소농도 자료는 현장에서 측정된 관측자료와 더불어 동한난류 해역의 물리$\cdot$생물학적인 시공간변동을 이해하는데 많은 도움을 줄 것이라 사료된다.
Abstract
Spatial distribution of Phytoplankton Pigment Concentration (PPC) and Sea Surface Temperature (SST) around the East Korean Warm Current (EKWC) was described, using both Coastal Zone Color Scanner (CZCS) images and Advanced Very High Resolution Radiometer (AVHRR) images in May, 1980. Water mass in this region can be classified into five categories in the horizontal profile of PPC and SST, nLw (normalized water-leaving radiance) images: (1) coastal cold water region associated with concentrations of dissolved organic material or yellow colored substances and suspended sediments, (2) cold water region of thermal frontal occurred by a combination of phytoplankton absorption and suspended materials, (3) warm water overlay region by the phytoplankton absorption than the suspended materials; (4) warm water region occurred by the low phytoplankton absorption, and (5) offshore region occurred by the high phytoplankton absorption. In particular, the highest PPC (>2.0 mg/m^3) area appeared in the CZCS and AVHRR images with a band shaped distribution of the thermal front and ocean color front region, which is located the coastal cold waters alonB western thermal front of the warm streamer of the EKWC. In this region, the highest PPC occurred by a combination of the high absorption of the phytoplankton (443 nm) and highest reflectance of suspended materials (550 nm). Another high PPC ($\simeq$$6\;mg/m^3$) appeared in the warm water overlay region inside warm streamer. High phytoplankton pigment concentration of this region was corresponding to the short wavelength of 443 nm, which represented phytoplankton absorption of the CZCS image.
An,H.S.,K.S.Shim and H.R.Shin. 1994. On the warm eddies in the southwestern part of the East sea (the Japan Sea). J. Oceanol, Soc. Korea, 29, 152-163
Arnone, R.A. and P.E. La Violette. 1986. Satellite definition of the bio-optical and thermal variation of coastal eddies associated with the African current. J. Geophys. Res., 91, 2351-2364
Banse, K. and D.C. English. 1994. Seasonality of coastal zone color scanner phytoplankton pigment in the offshore oceans. J. Geo-phys. Res., 99, 7323-7345
Eslinger, D.L., J.J. OBrien, R.L. Iverson. 1989. Empirical orthogonal function analysis of cloud-containing coastal zone color scanner images of northeastern North American coastal waters. J. Geo-phys. Res., 94, 10884-10890
Fukushima, H. and J. Ishizaka. 1993. Special features and applica-tions of CZCS data in Asian waters, In Ocean Colour theory and Applications in a Decade of CZCS Experience, eds. V. Barale and P.M. Schlittenharadt, Kluwer Academic, pp. 213-236
Gordon, H.R., D.K. Clark, J.W. Brown, O.B. brown, R.H.. Evans and W.W. Broenkow. 1983. Phytoplankton pigment concentration in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates. Appl. Opt., 22, 20-36
Hovis, W.A., D.K. dark, F. Anderson, R.W. Austin, W.H. Wilson, E. T. Baker, D. Ball, H.R. Gordon, J.L. Mueller, S.Y. El Sayed, B. Sturm, R.C. Wrigley and C.S. Yentsch. 1980. Nimbus-7 coastal zone color scanner: System description and initial imagery. Science, 210, 60-63
Ishizaka, J., H. Fukushima, M. Kishino, T. Saino and M. Takahashi. 1992. Phytoplankton pigment distributions in regional upwelling around the Izu Peninsula detected by coastal zone color scanner on May 1982. J. Oceanogr., 48, 305-327
Isoda, Y. and S. Saitoh. 1988, Variability of the sea surface tempera-ture obtained by the statistical analysis of AVHRR imagery - A case study of the south Japan Sea -. J. Oceanogr. Soc. Japan, 11, 52-59
Isoda, Y., S. Saitoh and M. Mihara. 1991. SST structure of the polar front in the Japan Sea. In Oceanography of Asian Marginal Seas, Vol. 54. ed. K. Takano, Elsevier, Amsterdam, pp. 103-112
Isoda, Y. and S. Saitoh. 1993. The northward intruding eddy along the east coast of Korea. J. Oceanogr., 49, 443-458
Kim, S.W., S. Saitoh, J. Ishizaka, Y, Isoda and M. Kishino. 2000. Temporal and spatial variability of phytoplankton pigment Con-centrations in the Japan Sea derived from CZCS images. J. Oceanogr., 56, 527-538
Matsumura, S. and H. Fukushima. 1988. Water mass analysis using ocean color map and sea surface temperature map obtained by NIMBUS-7/CZCS. Sora to Umi, 10, 27-39 (in Japanese with English abstract)
Morel, A. and L. Prieur. 1977. Analysis of variations in ocean color. Limnol. Oceanogr., 22, 709-722
Obata, A., J. Ishizaka, M. Endoh. 1996. Global verification of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data. J. Geophys. Res., 101, 20657-20667
Saitoh, S. 1995. AVHRR on NOAA. In Oceanographic Applications of Remote Sensing, eds. M. Ikeda and F. W. Dobson, CRC Press, Boca Raton, pp. 407-417
Sathyendranath, S., T. Platt, E.P.W. Home, W.G. Harrison, 0. Ulloa, R. Outerbridge and N. Hoepffner. 1991. Estimation of new Pro-duction in the ocean by compound remote sensing. Nature, 353, 129-133
Toba, Y., H. Kawamura, F. Yamashita and K. Hanawa. 1984. Structure of horizontal turbulence in the Japan Sea. In Ocean Hydrodynamics of the Japan and East China Seas, Vol. 39, ed. T. Ichiye, Elsevier Amsterdam, pp. 317-332
Yentsch, C.S. and D.A. Phinney. 1985. Rotary motions and Convec-tion as a means of regulating primary production in warm Strea-mer rings. J. Geophys. Res., 90, 3237-3248
Yoder, J.A., C.R. McClain, G.C. Feldman and W.E. Esaias. 1993. Annual cycles of phytoplankton chlorophyll concentrations in the global ocean: A satellite view. Global Biogeochem. Cycles, 7, 181-193
川合英夫. 1991. 對馬煖流系での總觀スケ-ルの構造と水産生物に及ぼす影響. 流れと生物と, 川合英夫薯, pp. 35-48
森勇. 1974. 西日本海夕域の生物學的特性. 對馬煖流, 水産學ツリ-·ズ5, 日本水産學會編, pp. 56-68
이 논문을 인용한 문헌 (3)
Kim, Sang-Woo ; Go, Woo-Jin ; Kim, Seong-Soo ; Jeong, Hee-Dong ; Yamada, Keiko 2010. "Characteristics of Ocean Environment Before and After Coastal Upwelling in the Southeastern Part of Korean Peninsula Using an In-situ and Multi-Satellite Data" 海洋環境安全學會誌 = Journal of the Korean society of marine environment & safety, 16(4): 345~352
Kim, Sang-Woo ; Kang, Yong-Q. ; Ahn, Ji-Sook 2011. "Study on the Retreatment Techniques for NOAA Sea Surface Temperature Imagery" 海洋環境安全學會誌 = Journal of the Korean society of marine environment & safety, 17(4): 331~337
2013. "" Journal of environmental science international = 한국환경과학회지, 22(10): 1363~1371