$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

측심기의 음향반사 특성을 이용한 해저퇴적물의 원격분류: 부산 수영만의 예비결과

Remote Seabed Classification Based on the Characteristics of the Acoustic Response of Echo Sounder: Preliminary Result of the Suyoung Bay, Busan

초록

해양의 표층퇴적물을 분류하는 일반적인 방법은 ground frothing에 의한 것으로 시료채취 정점에 국한된 자료라는 한계성을 가지고 있다. 최근에는 원격분류방법의 개발로 인하여 이러한 한계성을 극복한 연속적인 자료를 얻을 수 있도록 가능하게 되었다 본 연구에서는 해저면의 원격분류결과를 실시간 수치화된 자료로 얻을 수 있는 음향장비인 QTC View라는 기기를 이용해 부산 수영만의 표층 퇴적물을 원격분류 하였다. QTC View는 50kHz의 음향측심기와 연결하였고 측정장비의 설정환경은 조사동안 일정하게 유지하였다. Ground trothing에 의한 시료 분석결과 수영만은 slightly gravelly sand, slightly gravelly sandy mud. gravelly muddy sand, clayey sand, sandy mud, slightly gravelly muddy sand 그리고 rocky bottom의 총 7개의 퇴적물형으로 분류되었다. QTC View를 이용한 1차 원격분류결과 이들 7개 중 slightly gravelly sand, gravelly muddy sand, sandy mud 및 rocky bottom 등 4개의 퇴적물형이 구분되었으며 이는 2차 원격분류결과에서도 유사하게 분포하는 것으로 확인되었다. Ground frothing에 의한 분류자료와 원격분류 자료를 비교한 결과 퇴적물형을 구분할 때 소량성분에 의해 서로 다르게 구분된 경우는 다소 차이가 있으나 연구지역 전반에 걸친 퇴적물의 분포양상은 잘 일치하는 것으로 나타났다. 따라서 QTC View는 해저퇴적물을 원격분류하는데 유효하게 이용될 수 있을 것으로 본다.

Abstract

Determination of sediment type is generally based on ground truthing. This method, however, provides information only for the limited sites. Recent developments of remote classification of seafloor sediments made it possible to obtain continuous profiles of sediment types. QTC View system, which is an acoustic instrument providing digital real-time seabed classification, was used to classify seafloor sediment types in the Suyoung Bay, Pusan. QTC View was connected to 50 kHz echo sounder, All parameters of QTC View and echo sounder are uniformly kept during survey. By ground truthing, the sediments are classified into seven types, such as slightly gravelly sand, slightly gravelly sandy mud, gravelly muddy sand, clayey sand, sandy mud, slightly gravelly muddy sand, and rocky bottom. By the first remote classification using QTC View, four sediment types are clearly identified, such as slightly gravelly sand, gravelly mud, slightly gravelly muddy sand, and rocky bottom. These are similar to the result of the second survey. Also the result of remote classification matches well with that of ground truthing, but for sediment type determined by minor component. Therefore, QTC View can effectively be used for remote classification of seafloor sediments.

참고문헌 (25)

  1. Bahng, H.K. and J.K. Oh. 1993. Acoustic fades in the western South Sea, Korea. J. Korean Soc. Oceanogr., Korea, 28, 313-322 
  2. Chang, J.K., H.J. Kim, H.T. Jou, B.C. Suk, G.T. Park, H.S. Yoo and S.J. Yang. 1998. Seabed classification using the K-L (Karhunen-Loeve) transform of chirp profiling data: An effective approach to geoacoustic modeling. J. Korean. Soc. Oceanogr., 3, 158-164 (in Korean) 
  3. Choe K.Y. 1994. Geochemical characteristics of surface sediments in Suyoung Bay, Pusan, Korea. M.S. thesis, Pusan National Uni-versity. 87pp (in Korean) 
  4. Collins, W.T. 1996. Echo sounder used for seabed classification. Inter-national dredging review, 10-11 
  5. Collins, W.T., R. Gregory and J. Anderson. 1996. A digital approach to seabed classification. Sea Technolgy. 37, 83-87 
  6. Collins, W.T. and R.A. McConnaughey. 1998. Acoustic classification of the sea floor to address essential fish habitat and marine Pro-tected area requirements, Proceedings of Canadian Hydrographic Conference, 9pp 
  7. Folk, R.L. and W.C. Ward. 1957. Brazos River. A study in the signi-ficance of grain-size parameters. J. Sed. Petrol., 27, 3-27 
  8. Folk, R.L. 1968. Petrology of Sedimentary Rockcs. Hampill's Austin, Taxas, 170pp 
  9. Galloway, J.L. and W.T. Collins. 1998. Dual frequency acoustic Classi-fication of seafloor habitat using the QTC View. Quester tangent corporation, 5pp 
  10. Hamilton, L.J., PJ. Mulhearn and R. Poeckert. 1999. Comparison of RoxAnn and QTC-View acoustic bottom classification system performance for the Cairns area, Great Barrier Reef, Australia. Cont, SheIf Res., 19, 1577-1597 
  11. Hwang, J.D. 1993. Dispersion of pollutant flowing into Suyoung Bay, M.S. thesis, National Fisheries University of Pusan, 44pp (in Korean) 
  12. Kim, S.L., H.R. Yoo, K.T. Park, Y.K. Lee and C.H. An. 1987. Process-ing and acoustic backscattering characteristics on the seafloor image by side scan sonar. J. Korean Soc. Oceanogr., 22, 143-152 (in Korean) 
  13. Kim, H.J., B.C. Suk, S.L. Kim and S.J. Han. 1990. Attenuation coeffi-cients and biogenic gas content in the offshore surficial sedi-ments around the Korean Peninsula, J. Korean Soc. Oceanogr., 25, 26-35 (in Korean) 
  14. Kim, H.J., J.K. Chang, H.T. Jou and G.T. Park. 2002. Seabed Classi-fication from acoustic profiling data using the similarity index. JAcoust. Soc. Am., 111, 794-799 
  15. Lambert, D.N., M.T. Kalcic and R.W. Faas. 2002. Variability in the acoustic response of shallow-water marine sediments determined by normal-incident 30kHz and 50kHz sound. Mar. Geol., 182, 179-208 
  16. LeBlanc, L.R., L. Mayer, M. Rufino, S.G. Schock and J. King. 1991. Marine sediment classification using the Chirp sonar. J. Acoust. Soc. Am., 91, 107-115 
  17. Morrison, M.A., M.A. Thrush and R. Budd. 2001. Detection of acous-tic class boundaries in soft sediment systems using the seafloor acoustic discrimination system QTC View. J. Sea Res., 46, 233-243 
  18. Panda, S., L.R. LeBlanc and S.G. Schock. 1994. Sediment Classifica-tion based on impedance and attenuation estimation. J. Acoust. Soc. Am., 96, 3002-3035 
  19. QTC View manual. 1997. 91pp 
  20. Schock, S.G. and L.R. LeBlane. 1990. Chirp sonar: new technology for sub-bottom profiling. Sea technology, 31, 35-43 
  21. Schock, S.G., L.R. LeBlanc and L.A. Mayer. 1989. Chirp subbottom profiler for quantitative sediment analysis. Geophysics, 54, 445-450 
  22. Schock, S.G. and L.R. LeBlanc. 1992. Sediment classification using the Chirp sonar, OTC, Houston Texas, 6851, 363-368 
  23. Tsemahman, A.S. and W.T. Collins. 1997. Acoustic seabed Classifica-tion correlation analysis of sediment properties by QTC View. OCEANS '97, 8pp 
  24. Walter, D.J., D.N. Lambert and D.C. Young. 2002. Sediment facies determination using acoustic techniques in a shallow-water Car-bonate environment, Dry Tortugas, Florida. Mar. Geol., 182, 161-177 
  25. 김원식, 박관순, 한현철, 진재화, 김정기, 김상우, 박기화, 이봉주, 이사로. 1996. 광안대로 건설을 위한 해양 지구물리 탐사 최종 보고서.한국자원연구소, 82pp 

이 논문을 인용한 문헌 (2)

  1. Bok, Tae-Hoon ; Paeng, Dong-Guk ; Park, Yo-Sup ; Kong, Gee-Soo ; Park, Soo-Chul 2009. "Seafloor Sediment Classification Using Nakagami Probability Density Function of Acoustic Backscattered Signals" 한국음향학회지= The journal of the acoustical society of Korea, 28(3): 165~173 
  2. Seo, Young-Kyo ; Lee, Gwang-Soo ; Kim, Dae-Choul ; Lee, Hi-Il 2011. "Study of Sedimentary Deposits using High Resolution Seismic data in Suyeong Bay, Busan" 한국해양환경공학회지 = Journal of the Korean society for marine environmental engineering, 14(2): 81~92 

DOI 인용 스타일