$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

한천 올리고당 제조를 위한 유기산 처리 조건

Preparation Conditions of Agar Oligosaccharides with Organic Acids

초록

유기산을 이용한 한천의 올리고당화 조건을 검색한 결과. 유기산 조건에 관계없이 온도에 영향을 크게 받는 것으로 나타났으며, $100^{\circ}C$ 이하의 온도에서는 한천이 올리고당으로 분해되지 못하였다. 반면, $100^{\circ}C$$120^{\circ}C$ 조건은 유기산의 종류와 농도에 관계없이 올리고당화 할 수 있는 조건이었으며, 유기산 종류 및 농도, 처리시간에 따라 분해율의 차이를 나타내었는다. 즉 유기산의 농도가 높고 처리 시간이 길수록 분해율은 높았고, $120^{\circ}C$ 조건에서는 처리시간 90분 이후로는 $0.5\%$$0.7\%$의 유기산 농도가 큰 차이가 없었으며, 분해율만을 고려한 처리 유기산 조건은 citrate나 malate $0.5\%$가 적절한 것으로 확인되었다. 마이크로파 처리나 초음파 처리에 의한 한천의 분해율은 $5\%$가 이내로 매우 부분적으로 일어나 저분자화나 올리고당화의 가열매체로서는 의미가 없었다. $100^{\circ}C$ 이상의 온도에서 얻어진 분해물의 TLC 상의 형태는 유기산의 종류에 따라 다소 차이가 있었으며, 분해 온도가 높을수록 저분자획분이 많이 나타났다. TLC 상에서 나타난 spot 들의 중합도를 확인한 결과. 평균 중합도가 2$\~$6 정도인 한천 올리고당인 것으로 확인되었다.

Abstract

The optimum organic acid and temperature conditions were investigated for the preparation of oligosaccharides from agar. The tested organic acids were acetate, citrate, lactate, malate, and succinate and the conditions for oligosaccharides preparation were $0.3\%,\;0.5%;and\;0.7\%$ organic acid concentrations at $80\~120^{\circ}C.$ The low concentration of organic acid below $0.3\%$ decreased the degrading ratio and the high concentration up $0.5\%$ could not changed the degrading ratio. Conditions below $100^{\circ}C$ was not good for degrading agar. But $100^{\circ}C\;or\;120^{\circ}C$ was optimal temperature conditions for agarooligosaccharides according to the organic acid type and concentration. The organic acid concentration was $0.5\%$ and organic acid was the citrate or malate. The treatment time considered optimum was 120$\~$180 min. The maximal degrading ratio giving optimum conditions such as $100^{\circ}C\;and\;120^{\circ}C\;was\;35.5\%\;and\;38.7\%,$ respectively. The agarooligosaccharides prepared by autoclaving at $100^{\circ}C\;and\;120^{\circ}C$ were 2$\~$7 species oligomer.

저자의 다른 논문

참고문헌 (13)

  1. Araki. C.L. 1965. Some recent studies on the polysaccharides of agarophytes, pp. 3-17. In E.G. Young and J.L. Maclahan (ed.), Proc. Int. Seaweed Symp. 5, Pergamon Press, London. 
  2. Durkworth, M. and W. Yaphe. 1970. Thin-layer chromatographic analysis of enzymic hydrolysates of agar. J. Chrom., 49, 482-487. 
  3. Durkworth, M. and W. Yaphe. 1971. The structure of agar. Part 1. The fractionation of a complex mixture of polysaccharides. Carbohydr. Res., 16, 189-197. 
  4. Groleau, D. and W. Yaphe. 1977. Enzymatic hydrolysis of agar; purification and characterization of $\beta$-neoagarotetraose hydrolase from Pseudomonas atlantica. Can. J. Microbiol., 23, 672-679. 
  5. Joo, D.S., H.M. Song, J.S. Lee, S.Y. Cho and E.H. Lee. 1998a. Characterization and purification of agarase from Cytophaga sp. ACLJ-18. Korean J. Biotechnol. Bioeng., 13, 320-324 (in Korean). 
  6. Joo, D.S., S.Y. Cho and E.H. Lee. 1998b. Preparation of agar hydroIysates by agarase and functionality of the hydrolysates. Korean J. Biotechnol. Bioeng., 13, 378-382 (in Korean). 
  7. Kato, I. 1999. The functions of agar and agaro-oligosaccharides. Food & Develop., 33, 44-46 (in Japanese). 
  8. Kim, B.J., S.D. Ha, D.J. Lim, C.M. Song and J.Y. Kong. 1998. Production of agarooligosaccharides using of agarase from marine bacterium Bacillus cereus ASK202. Korean J. Biotech. Bioeng., 13, 524-529 (in Korean). 
  9. Leon, O., L. Quintana, G. Peruzzo and J.C. SIebe. 1992. Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl. Environ. Microbiol., 58, 4060-4063. 
  10. Morrice, L.M., M.W. McLean, F.B. Williamson and W.F. Long. 1983. $\beta$-Agarase I and II from Pseudomonas atlantica purifications and some properties. Eur. J. Biochem., 135, 553-558. 
  11. Rees, D.A. 1969. Structural conformation and mechanism in the formation of polysaccharide gels and networks. Adv. Carbohydr. Biochem., 24, 267-332. 
  12. Somogyi, M. and N. Nelson. 1952. Notes on sugar determination. J. BioI. Chern., 195, 19-23. 
  13. Waniska, R.D. and J.E. Kinsella. 1980. Comparison of methods for separating oligosaccharides: ultrafiltration, gel permeation and adsorption chromatography. J. Food Sci., 45, 1259-1262. 

이 논문을 인용한 문헌 (3)

  1. Lee, Dong-Geun ; Kim, Nam-Young ; Jang, Min-Kyung ; Lee, Ok-Hee ; Lee, Sang-Hyeon 2007. "Isolation and characterization of a marine bacterium Thalassomonas sp. SL-5 producing β-agarase" 생명과학회지 = Journal of life science, 17(1): 70~75 
  2. Lee, Sung-Mok ; Yu, Byung Jo ; Kim, Young Min ; Choi, Soo-Jeong ; Ha, Jong-Myung ; Lee, Jae-Hwa 2009. "Production of Bio-ethanol from Agar using Saccharomyces cerevisiae" 공업화학 = Applied chemistry for engineering, 20(3): 290~295 
  3. Seok, Ji-Hwan ; Park, Hee-Gyun ; Lee, Sang-Hyeon ; Nam, Soo-Wan ; Jeon, Sung-Jong ; Kim, Jong-Hyun ; Kim, Yeon-Hee 2010. "High-level Secretory Expression of Recombinant $\beta$-Agarase from Zobellia galactanivorans in Pichia pastoris" 한국미생물·생명공학회지 = Korean journal of microbiology and biotechnology, 38(1): 40~45 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일