• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

임플란트 고정체의 platform의 크기에 따른 유한요소법적 응력분석



Statement of Problem : With increasing demand of the implant-supported prosthesis, it is advantageous to use the different platform width of the fixture according to bone quantity and quality of the patients. Purpose : The purpose of this study was to assess the loading distributing characteristics of two implant designs according to each platform width of fixture, under vertical and inclined loading using finite element analysis. Material and method : The two kinds of finite element models were designed according to each platform width of future (4.1mm restorative component x 11.5mm length, 5.0mm wide-diameter restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction, 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction and 200N at the buccal cusp in a 300 transverse direction individually Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. Results : The stresses were concentrated mainly at the cortex in both vertical and oblique load ing but the stresses in the cancellous bone were low in both vertical and oblique loading. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading. Increasing the platform width of the implant fixture decreased the stress in the supporting bone, future and abutment screw. Increased the platform width of fixture decreased the stress in the crown and platform. Conclusion : Conclusively, this investigation provides evidence that the platform width of the implant fixture directly affects periimplant stress. By increasing the platform width of the implant fixture, it showed tendency to decreased the supporting bone, future and screw. But, further clinical studies are necessary to determine the ideal protocol for the successful placement of wide platform implants.

저자의 다른 논문

참고문헌 (25)

  1. Albrektsson, T., Branemark, P.I.. Hansson, H.A., Lindstrom, J .. Osseointegration titanium implants. Requirements for ensuring long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52: 155-170,1981 
  2. Misch, C.E .. Contemporary implant dentistry. 1993 Mosby-Year Book Inc St Louis 
  3. Renouard, F., Arnoux, J.P., Sarment, D.P.. Five-mm-diameter implants without a smooth surface collar: Report on 98 consecutive placements. Int. J. Oral Maxillofac Implants 14: 101-107,1999 
  4. Haraldson. T., Zarb, G.A .. A 10-year follow-up study of the masticatory system after treatment with osseointegrated implant bridges. Scand J Dent Rec 96: 243-252,1988 
  5. Holmes, D.C., Grigsby, W.R, Goel, V.K., Keller, J.C.. Comparison of stress transmission in the IMZ implant system with polyoxymethylene or titanium intramobile element: A finite element stress analysis. Int. J. Oral Maxillofac Implants 7:450458,1992 
  6. Rangert, B., .Jemt. T., Jorneus. L.. Forces and moments on Branemak implants. Int. J. Oral Maxillofac Implants 4:241-247, 1989 
  7. Clelland, N.L., Lee, J.K., Bimbenet, O.C., Gilat, A.. Use of an axisymmetric finite element method to compare maxillary bone variables for a loaded implant. J. Prosthodont 2: 183-189, 1993 
  8. Minsk, L., Polson, A.M., Weisgold, A, Rose, L.F., Baumgarrten, H.. Outcome failures of endosseous implants from a clinical training center. Compend Contin Educ Dent 17(9): 848-856,1996 
  9. Matsushita, Y., Kithoh, M., Mizuta, K., Ikeda, H., Suetsugu, T.. Two-dimentional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J. Oral Implantol 16:6-11.1990 
  10. Morimoto, K., Kihara, A.. Takeshita, F., Suetsugu, T.. An experimental study on the tissue compatibility of the titanium bladevent implant coated with HAP-alumina in the semi- functional state. J. Oral Implantol 13:387-401.1987 
  11. Ivanoff, C.J., Grodahl, K., Sennerby, L., Bergstr m, C., Lekholrn. U.. Influence of variations in implant diameters: A 3- to 5-year retrospective clinical report. Int. J. Oral Maxillofac Implants 14: 173-180,1999 
  12. Friberg, B.. .Jemt. T.. Lekholm, U.. Early failures in 4641 cosecutively placed Br${\aa}$nsmark dental implants. A study from stage I surgery to the connection of completed prostheses. Int. J Oral Maxillofac Implants 6:142-146,1991 
  13. Hur,J.K., Chung, C.H., Jeong,S.M.. Finite element analysis of implant prosthesis according to diameter and length of implant fixture. J. Kor Acad. 
  14. Clarizio. L.F.. Techniques for ideal implant placement in the mandibular first molar position. Compend Con tin Educ Dent 16(8) :806-813,1995 
  15. Boggan, RS., Strong, J.T., Misch, C.E., Bidez, M.W.. Influence of hex gometry and prosthetic table width on static and fatigue strength of dental implants. J. Prosthet Dent 82:436-440,1999 
  16. Borchers, L., Reichart, P .. Three-dimentional stress distribution around a dental implant at different stages of interface development. J. Dent Rec 62: 155-159,1983 
  17. Kinni, M.E., Hokama , S.N., Caputo, A.A. Force transfer by osseointegration implant devices. Int. J. Oral Maxillofac Implants 1:11-14,1987 
  18. Rangert, B., Krogh, P.H.J., Langer, B., van Roekel, N.B .. Bending overload and implant fracture: A retrospective clinical analysis. Int. J. Oral Maxillofac Implants 10:326-334,1995 
  19. Lum. L.B., Osier, J.F.. Load transfer from endosteal implants to supporting bone: An analysis using statics. Part two: Axial loading. J. Oral Implantol 18:349-353,1992 
  20. Lum. L.B., Osier, J.F.. Load transfer from endosteal implants to supporting bone: An analysis using statics. Part one: Horizontal loading. J. Oral Implantol 18:343-348,1992 
  21. Jaffin. R.A., Berman, C.L.. The excessive loss of Br${\aa}$nernark fixtures in type IV bone. A 5-year analysis. J. Periodonto1 62:24.1991 
  22. Jarvis, W.C.. Biomechanical advantages of wide-diameter implants. Compend Contin Educ Dent 18(7) :687-696.1997 
  23. Lum. L.B .. A biomechanical rationale for the use of short implants. J. Oral Implantol 17: 126-131, 1991 
  24. Langer, B., Langer, L., Herrmann, I., .Jorneus. L.. The wide fixture: a solution for special bone situations and a rescue for the compromised implant. Part 1. Int. J. Oral Maxillofac Implants 8:400-408,1993 
  25. Lekholm, D., van, Steenberghe, D., Herrmann, I.. Osseointegrated implants in the treatment of partially edentulous jaws: A prospective 5-year multicenter study. Int. J. Oral Maxillofac Implants 9:627-635,1994 

이 논문을 인용한 문헌 (3)

  1. Jung Jong-Won ; Lee Cheong-Hee 2004. "THE EFFECT OF THE DIFFERENCE OF THE IMPLANT FIXTURE AND ABUTMENT DIAMETER FOR STRESS DISTRIBUTION" 대한치과보철학회지 = The journal of Korean academy of prosthodontics, 42(5): 583~596 
  2. Yoo, Mi-Kyung ; Lim, Sung-Bin ; Chung, Chin-Hyung ; Hong, Ki-Seok 2006. "Study on the stress distribution around two types of implants with an internal connection by finite element analysis" 대한치주과학회지 = The journal of Korean academy of periodontology, 36(2): 473~488 
  3. Lee, Hye-Sung ; Kim, Myung-Rae ; Park, Ji-Man ; Kim, Sun-Jong 2010. "A 3-dimensional finite element analysis of tapered internal connection implant system (Avana SS $III^{(R)}$) on different abutment connections" 대한치과보철학회지 = The journal of Korean academy of prosthodontics, 48(3): 181~188 


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일