$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

The present study were designed to characterize the action mechanisms of acetylcholine (ACh)-induced endothelium-dependent relaxation in arteries precontracted with high $K^+$(70 mM). For this, we simultaneously measured both muscle tension and cytosolic free $Ca^{2+}$ concentration $([Ca^{2+}]_i)$, using fura-2, in endothelium-intact, rabbit carotid arterial strips. In the artery with endothelium, high $K^+$ increased both $[Ca^{2+}]_i$ and muscle tension whereas ACh $(10{\mu}M)$ significantly relaxed the muscle and increased $[Ca^{2+}]_i$. In the presence of $N^G$-nitro-L-arginine (L-NAME, 0.1 mM), ACh increased $[Ca^{2+}]_i$ without relaxing the muscle. In the artery without endothelium, high $K^+$ increased both $[Ca^{2+}]_i$ and muscle tension although ACh was ineffective. 4-DAMP (10 nM) or atropine $(0.1{\mu}M)$ abolished ACh-induced increase in $[Ca^{2+}]_i$ and relaxation. The increase of $[Ca^{2+}]_i$ and vasorelaxation by ACh was siginificantly reduced by either $3{\mu}M$ gadolinium, $10{\mu}M$ lanthanum, or by $10{\mu}M$ SKF 96365. These results suggest that in rabbit carotid artery, ACh-evoked relaxation of 70 mM $K^+$-induced contractions appears to be mediated by the release of NO. ACh-evoked vasorelaxation is mediated via the $M_3$ subtype, and activation of the $M_3$ subtype is suggested to stimulate nonselective cation channels, leading to increase of $[Ca^{2+}]_i$ in endothelial cells.

저자의 다른 논문

참고문헌 (18)

  1. Koyama T, Kimura C, park SJ, Oike M, Ito Y. Functional implications of Ca2$^+$ mobilizing properties for nitric oxide production in aortic endothelium. Life Sci 72: 511-520, 2002 
  2. Lopez-Jaramillo P, Gonzalez MC, Palmar RMJ, Moncada S. The crucial role of physiological Ca2+ concentrations in the production of endothelial nitric oxide and the control of vascular tone. Br J Pharmacol 101: 489-493, 1990 
  3. Nilius B, Viana F, Droogmans G. Ion channels in vascular endothelium. Ann Rev Physiol 59: 145-170, 1997 
  4. Sato K, Ozaki H, Karaki H. Differential effects of carbachol on cytosolic calcium levels in vascular endothelium and smooth muscle. J Pharmacol Exp Ther 255: 114-119, 1990 
  5. Miller VM, Vanhoutte PM. Endothelium-dependent vascular responsiveness: evolutionary aspects. In Endothelial Regulation of Vascular Tone (Ryan US, Rubanyi GM. eds) pp. 3-20, Marcel Dekker, Inc., New York, 1992 
  6. Adams DJ. Ionic channels in vascular endothelial cells. Trends in Pharmacol Sci 4: 18-26, 1994 
  7. Viana F, De Smedt H, Droogmans G, Nilius B. Calcium signaling through nucleotide receptor P2Y2 in cultured human vascular endothelium. Cell Calcium 24: 117-127, 1998 
  8. Nilius B, Viana F, Kamouchi M, Fasolato C, Eggermont J, Droogmans G. Ca$^{2+}$ signaling in endothelial cells: role of ion channels. Korean J Physiol Pharmacol 2: 133-145, 1998 
  9. Busse R, Mulsch A. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett 265: 133-136, 1990 
  10. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109- 142, 1991 
  11. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109- 142, 1991 
  12. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373-376, 1980 
  13. Kamouchi M, Mamin A, Droogmans G, Nilius B. Nonselective cation channels in endothelial cells derived from human umbilical vein. J Membrane Biol 169: 29-38, 1999 
  14. Tsuchida H, Seki S, Tanaka S, Okazaki K, Namiki A. Halothane attenuates the endothelial Ca$^{2+}$ increase and vasorelaxation of vascular smooth muscle in the rat aorta. Br J Anaesth 84: 215- 220, 2000 
  15. Caldwell RA, Clemo HF, Baumgarten CM. 1998. Using gadolinium to identify stretch-activated channels: techanical considerations. Am J Physiol 275: C619-C621, 1998 
  16. Komori K, Suzuki H. Heterogenous distribution of muscarinic receptors in the rabbit saphenous artery. Br J Pharmacol 92: 657-664, 1987 
  17. Wu CC, Chen SJ, Yen MH. 1997. Loss of acetylcholine-induced relaxation by M3-receptor activation in mesenteric arteries of spontaneously hypertensive rats. J Cardiovasc Pharmacol 30: 245-252, 1997 
  18. Chiba S, Tsukada M. Possible involvement of muscarinic M1 and M3 receptor subtypes mediating vasodilation in isolated, perfused canine lingual arteries. Clinical & Exp Pharmacol & Physiol 23: 839-843, 1996 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일