• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


A method for synthesizing branched fructo-oligosaccharides (BFOS) with a high concentration of sucrose ($1{\~}3$ M) was developed using levansucrase prepared from Leuconortoc mesenteroides B-1355C. The degree of polymerization of oligosaccharides synthesized according to the present method ranged from 2 to over 15. The synthesized BFOS were stable at a pH ranges of 2 to 4 under $120^{\circ}C$. The percentage of BFOS in the reaction digest was $95.7\%$ (excluding monosaccharides; $4.3\%$ was levan). BFOS reduced the insoluble glucan formation by Streptococcus sobrinus on the surfaces of glass vials or stainless steel wires in the presence of sucrose. They also reduced the growth and acid productions of S, sobrinus. Oligosaccharides can be used as sweeteners for foods such as beverages requiring thermo- and acid-stable properties and 3s potential inhibitors of dental caries.

저자의 다른 논문

참고문헌 (21)

  1. Marsh, P. D. (1999) Oral Microbiology. 4th ed., pp. 58-81. Wright, Woburn, USA 
  2. Park, H. E., N. H. Park, M. J. Kim, T. H. Lee, H. G. Lee, J. Y. Yang, and J. H. Cha (2003) Enzymatic synthesis of fructosyl oligosaccharides by levansucrase from Microbacterium laevaniformans ATCC 15953. Enzyme Microb. Technol. 32: 820-827 
  3. Kim, D., J. F. Robyt, S. Y. Lee, J. H. Lee, and Y. M. Kim (2003) Dextran molecular size. and degree of branching as a function of sucrose concentration, pH, and temperature of reation of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydr. Res. 338: 1183-1189 
  4. Hamada, S. and H. D. Slade (1980) Biology, immunology and cariogencity of Streptococcus mutans. Microbiol. Rev. 44: 331-384 
  5. Robyt, J. F. and P. J. Martin (1983) Mechanism of synthesis of D-glucans by D-glucosyltransferase from Streptococcus mutans 6715. Carbohydr. Res. 113: 301-315 
  6. Vacca-smith, A. M., A. R. Venkitaraman, and R. G. Quivey (1996) Interaction of Streptococcal glucosyltransferase with $\alpha$-amylase and starch on the surface of salivacoated hydroxyapatite. Archs. Oral Biol. 41: 291-298 
  7. Heo, S. J., D. Kim, I. S. Lee, and P. S. Chang (1999) Develoment of mixed-culture fermentation process and charaterization for new oligosacchariedes and dextran using Lipomyces starkeyi and Leuconostoc mesenteroides. Kor. J. Appl. Microbiol. Biotechnol. 27: 304-310 
  8. Lee, J. H., S. Y Lee, G. O. Lee, E. S. Seo, S. S. Chang, and D. Kim (2003) Transglycosylation reaction and raw starch hydrolysis by a novel carbohydrate from Lipomyces starkeyi. Biotechnol. Bioprocess Eng. 8: 106-111 
  9. Jang, E. K., K. H. Jang, I. Koh, I. H. Kim, S. H. Kim, S. A. Kang, C. H. Kim, S. D. Ha, and S. K. Rhee (2002) Molecular characterization of the levansucrase gene from Pseudomonas aurantiaca S-4380 and its expression in Escherichia coli. J. Microbiol. Biotechnol. 12: 603-609 
  10. Imai, S., K. Takeuchi, K. Shibata, S. Yoshikawa, S. Kitahata, S. Okada, S. Araya, and T. Nisizawa (1984) Screening of sugars inhibitory against sucrose-dependent synthesis and adherence of insoluble glucan and acid production by Streptococcus mutans. J. Dent. Res. 63: 1292-1297 
  11. Tanzer, J. M., M. L. Freedman, and R. J. Fitzgerald (1985) Virulence of mutants defective in glucosyltransferase, dextran mediated aggregation, or dextranase activity. pp. 204-211. In: S. E. Mergenhagen and B. Rosan (eds.). Molecular Basis of Oral Microbial Adhesion. ASM, Washington, USA 
  12. Tsuchiya, H. M., N. N. Hellman, H. J. Koepsell, J. Corman, S. S. Stringer, and R. W. Jackson. (1955) Factor affecting molecular weight of enzymatically synthesized dextran. J. Am. Chem. Soc. 77: 2412-2419 
  13. Magali, R. S., R. M. Willemot, and P. Monsan (2000) Glucansucrase: Molecular engineering and oligosaccharide synthesis. J. Mol. Catalysis 16: 117-128 
  14. Kim, C. Y., J. H. Lee, B. H. Kim, S. K. Yoo, E. S. Seo, K. S. Cho, D. F. Day, and D. Kim (2002) Production of mannitol using Leuconostoc mesenteroides NRRL B-1149. Biotechnol. Bioprocess Eng. 7: 234-236 
  15. Lindgren, S. E. and W. J. Dobrogosz (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS. Microbiol. Rev. 7: 149-163 
  16. Chambert, R., M. C. Rain-Guion, and M. F. Petit-Glatron (1992) Readthrough of the Bacillus subtilis stop codon produces an extended enzyme displaying a higher polymerase activity. Biochim. Biophys. Acta 1132: 145-153 
  17. Ryu, S. J., D. Kim, H. J. Ryu, and D. F. Day (2000) Purification and partial characterization of a novel glucanhydrolase from Lipomyces starkeyi KSM 22 and its use for inhibition of insoluble glucan formation. Biosci. Biotechnol. Biochem. 64: 223-228 
  18. Song, D. D. and N. A. Jacques (1999) Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975. J. Biochem. 341: 285-291 
  19. Robyt, J. F. (1995) Mechanism in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv. Carbohydr. Chem. Biochem. 51: 133-168 
  20. Fu, D. T. and J. F. Robyt (1991) Maltodextrin acceptor reactions of Streptococcus mutans 6715 glucosyltransferases. Carbohydr. Res. 217: 201-211 
  21. Geier, G. and K. Geider (1993) Characterization and influence on virulence of the levansucrase gene from the firelight pathogen Erwinia amylovora. Physiol. Mol. Plant Pathol. 42: 387-404 

이 논문을 인용한 문헌 (1)

  1. 2005. "" Biotechnology and bioprocess engineering, 10(6): 582~586 


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일