$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.

저자의 다른 논문

참고문헌 (31)

  1. Comparison of adaptive methods for function estimation from samples , V. Cherkassky;D. Gehring;F. Mulier , IEEE Trans. on Neural Networks / v.7,pp.969-984, 1996
  2. Fuzzy function approximation with ellipsoidal rules , J. A. Dicherson;B. Kosko , IEEE Trans. on Systems, Man and Cybernetics / v.26,pp.542-560, 1996
  3. Polynomial theory of complex systems , A. G. Ivakhnenko , IEEE Trans. on Systems, Man and Cybernetics / v.SMC-1,pp.364-378, 1971
  4. A. G. Ivakhnenko;H. R. Madala , Inductive Learning Algorithms for Complex Systems Modeling / v.,pp., 1994
  5. The review of problems solvable by algorithms of the group method of data handling (GMDH) , A. G. Ivakhnenko;G. A. Ivakhnenko , Pattern Recognition and Image Analysis / v.5,pp.527-535, 1995
  6. Self-organization of neural networks with active neurons , A. G. Ivakhnenko;G. A. Ivakhnenko;J.A. Muller , Pattern Recognition and Image Analysis / v.4,pp.185-196, 1994
  7. The design of selforganizing polynomial neural networks , S.-K. Oh;W. Pedrycz , Information Science / v.141,pp.237-258, 2002
  8. Polynomial neural networks architecture: analysis and design , S.-K. Oh;W. Pedrycz;B.-J. Park , Computers and Electrical Engineering / v.29,pp.703-725, 2003
  9. Optimal design of self-organizing polynomial neural networks by means of genetic algorithms , H.-S. Park;B.-J. Park;S.-K. Oh , Journal of the Research Institute of Engineering Technology Development (in Korean) / v.22,pp.111-121, 2002
  10. Evolutionary optimization of fuzzy models in fuzzy logic: A framework for the new millennium , W. Pedrycz;M. Reformat;V. Dimitrov(ed.);V. Korotkich(ed.) , Studies in Fuzziness and Soft Computing / v.8,pp.51-67, 1996
  11. J. H. Holland , Adaptation in Natural and Artificial Systems / v.,pp., 1975
  12. D. E. Goldberg , Genetic Algorithm in Search, Optimization & Machine Learning / v.,pp., 1989
  13. Are genetic algorithms function optimizers? , K. A. De Jong;Manner R.(ed.);Manderick, B.(ed.) , Parallel Problem Solving from Nature 2 / v.,pp., 1992
  14. Z. Michalewicz , Genetic Algorithms + Data Structures = Evolution Programs / v.,pp., 1996
  15. Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear system , S.-K. Oh;W. Pedrycz , Fuzzy Sets and Systems / v.115,pp.205-230, 2000
  16. Hybrid identification of fuzzy rule-based models , S.-K. Oh;W. Pedrycz;B.-J. Park , Int. J. of Intelligent Systems / v.17,pp.77-103, 2002
  17. Hybrid identification in fuzzy-neural networks , S.-K. Oh;W. Pedrycz;H.-S. Park , Fuzzy Sets and Systems / v.138,pp.399-426, 2003
  18. Fuzzy relation-based neural-networks and their hybrid identification , S.-K. Oh;W. Pedrycz;H.-S. Park , IEEE Trans. on Instrumentation and Measurement / v.,pp., 2004
  19. F. G. Shinskey , pH and pION Control in Proc. and Waste Streams / v.,pp., 1973
  20. Modeling and self-tuning control of a multivariable pH neutralization process , R. C. Hall;D. E. Seberg , Proc. ACC / v.,pp.1822-1827, 1989
  21. Time optimal and Ziegler-Nichols control , T. J. McAvoy , Ind. Eng. Chem. Process Des. Develop / v.11,pp.71-78, 1972
  22. Comparison of linear and nonlinear adaptive control of a pH-process , G. A. Pajunen , IEEE Control Systems Magazine / v.7,pp.39-44, 1987
  23. Fuzzy control of pH using genetic algorithms , C. L. Karr;E. J. Gentry , IEEE Trans. on Fuzzy Systems / v.1,pp.46-53, 1993
  24. Dynamics of pH in controlled stirred tank reactor , T. J. McAvoy;E. Hsu;S. Lowenthal , Ind. Engrg. Chem. Process Des. Develop / v.11,pp.68-70, 1972
  25. Dynamic modeling and reaction invariant control of pH , T. K. Gustafsson;K. V. Waller , Chem. Engrg. Sci. / v.38,pp.389-398, 1983
  26. Modeling pH neutralization processes using fuzzy-neural approaches , J. Nie;A. P. Loh;C. C. Hang , Fuzzy Sets and Systems / v.78,pp.5-22, 1996
  27. Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling , B.-J. Park;W. Pedrycz;S.-K. Oh , IEEE Trans. on Fuzzy Systems / v.10,pp.607-621, 2002
  28. Genetically optimized rule-based fuzzy polynomial neural networks: synthesis of computational intelligence technologies , S.-K. Oh;J. F. Peters;W. Pedrycz;T.-C. Ahn , Lecture Notes in Artificial Intelligence / v.2639,pp.437-444, 2003
  29. Selforganizing neurofuzzy networks based on evolutionary fuzzy granulation , S.-K. Oh;W. Pedrycz;B.-J. Park , IEEE Trans. on SMC-A / v.33,pp.271-277, 2003
  30. S.-K. Oh , Fuzzy Model & Control System by CProgramming / v.,pp., 2002
  31. S.-K. Oh , Computational Intelligence by Programming focused on Fuzzy, Neural Networks, and Genetic Algorithms / v.,pp., 2002

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일