• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


Cabbage plants were transformed with the potato proteinase inhibitor II (PINII) gene, bar gene, and hpt gene using Agrobacterium. The expression of the PINII gene was driven by its own promoter which was wound-inducible. Ten transgenic plants were obtained from medium containing hygromycin as a selection antibiotic. The integration and expression of PINII and bar genes were confirmed by Southern and Northern hybridization. Growth and development of diamondback moths (Plutella xylostella) and tobacco cutworm (Spodoptera litura) larvae were examined on $T_1$ plants. The weight of the larvae and pupae of these two insects grown on transgenic plants was not different compared to those grown on wild type plants. However, the pupation and emergence rate of diamondback moths and tobacco cutworms fed on some transgenic plants was lower than on wild type plants. These results suggest that the PINII transgene under the control of a wound-induced promoter may be used for control of insects in transgenic cabbage through reduction of insect progeny number.

저자의 다른 논문

참고문헌 (31)

  1. Charity JA, Anderson MA, Bittisnich DJ, Whitecross M, Higgins TJV (1999) Transgenic tobacco and peas expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance. Molecular Breeding 5: 357-365 
  2. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81: 1991-1995 
  3. Giri AP, Harsulkar AM, Deshpande VV, Sainani MN, Gupta VS, Ranjekar PK (1998) Chickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases. Plant Physiol 116: 393-401 
  4. Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 333: 160-163 
  5. Jongsma MA, Bolter C (1997) The adaptation of insects to plant protease inhibitors. J Insect Physiol 41(10): 885-895 
  6. Jouanin L, Bonade-Bottino M, Girard C, Morrot G, Giband M (1998) Transgenic plants for insect resistance. Plant Science 131: 1-11 
  7. McManus MT, White DWR, McGregor PG (1994) Accumulation of a chymotrypsin inhibitor in transgenic tobacco can affect the growth of insect pests. Transgenic Research 3: 50-58 
  8. SAS Institute Inc. (1985) SAS Users Guide : Basics, Version 5 Edition. Cary, NC : SAS Institute Inc, pp 1290 
  9. Verwoerd TC, Dekker BMM, Hoekema A (1989) A small scale procedure for the rapid isolation of plant RNAs. Nucleic Acid Research 17: 2362 
  10. Winterer J, Bergelson J (2001) Diamondback moth compensatory consumption of protease inhibitor-transformed plants. Molecular Ecology 10: 1069-1074 
  11. De Leo F, Bonade-Bottino MA, Ceci LR, Gallerani R, Jouanin L (1998) Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants. Plant Physiol 118: 997-1004 
  12. Hilder VA, Gatehouse AMR, Boulter D (1993) Transgenic plants conferring insect tolerance: protease inhibitor approach, In: Kung SD, Wu R (Ed), Transgenic Plants. Engineering and Utilization, 1. Academic Press, New York, pp 317-338 
  13. Yeh KW, Lin MI, Tuan SJ, Chen YM, Lin CY, Kao SS (1997) Sweet potato (Ipomoea batatas) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera Iitura. Plant Cell Reports 16: 696-699 
  14. Broadway RM, Duffey SS (1986) Plant proteinase inhibitors : mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol 32: 827-833 
  15. Cho HS, Cao J, Ren JP, Earle ED (2001) Control of Lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis crylC gene. Plant Cell Reports 20: 1-7 
  16. Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insectresistant transgenic plants. Trends in Biotechnology 16: 168-175 
  17. Tabashnik E (1994) Evolution of resistance to Bacillus thuringensis. Annu Rev Entomol 39: 47-79 
  18. De Leo F, Gallerani R (2002) The mustard trypsin inhibitor 2 affects the fertility of Spodoptera littoralis larvae fed on transgenic plants, Insect Biochemistry and Molecular Biology 32: 489-496 
  19. Ding LC, Hu CY, Yeh KW, Wang PJ (1998) Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Reports 17: 854-860 
  20. Cao J, Tang JD, Shelton AM, Earle ED (1999) Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moths resistant to Cry1C. Molecular Breeding 5: 131-141 
  21. Duan X, Li X, Xue Q, Abo-el-Saad M, Xu D, Wu R (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. National Biotechnology 14(4): 494-498 
  22. Shure M, Wesslers S, Federoff N (1983) Molecular indentification of the waxy locus in maize. Cell 35: 225-233 
  23. Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends in Plant Science 2(10): 379-384 
  24. Schelton AM, Robertson JL, Tang JD (1993) Resistance of the diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringensis subspecies in the field. J Econ Entomol 86: 697-705 
  25. Lee YH, Lee SB, Suh SC, Byun MO, Kim HI (2000) Herbicide resistant cabbage (Brassica oleracea ssp. capitata) plants by Agrobacterium-mediated transformation. J Plant Biotechnology 2: 35-41 
  26. Gatehouse AMR, Gatehouse JA (1998) Identifying proteins with insecticidal activity: use of encoding genes to produce insect-resistant transgenic crops. Pestic Sci 52: 165-175 
  27. Iyer LM, Kumpalata SP, Chandrasekharan MB, Hall TC (2000) Transgene silencing in monocots. Plant Mol Biol 43: 323-346 
  28. Broadway RM (1995) Are insects resistant to plant proteinase inhibitors J Insect Physiol 41(2): 107-116 
  29. Girard C, metayer ML, Zaccomer B, Bartlet E, Williams I, Bonade-Bottino M, Pham-Delegue MH, Jouanin L (1998) Growth stimulation of beetle larvae reared on a transgenic oilseed rape expressing a cysteine proteinase inhibitor. Journal of Insect Physiology 44: 263-270 
  30. Johnson KA, Narvaez J, An G, Ryan CA (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: Effects on natural defense against Manduca Sexta larvae. Proc. Natl. Acad. Sci USA 86: 9871-9875 
  31. Williams DL (1997) Isolation and characterization of a serine proteinase inhibitor cDNA (Accession No. U18995) from cabbage. Plant Physiol 114: 747 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일