$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effects on the Development of Plutella xylostella and Spodoptera litura after Feeding on Transgenic Cabbage Expressing Potato Proteinase Inhibitor II and Bar Genes 원문보기

Journal of plant biotechnology, v.6 no.3, 2004년, pp.145 - 150  

Lee, Yeon-Hee (National Institute of Agricultural Biotechnology) ,  Lee, Sang-Guei (National Institute of Agricultural Science Technology) ,  Park, Beom-Seok (National Institute of Agricultural Biotechnology) ,  Lee, Young-Su (Gyeonggi Province Agricultural Research and Extension Services) ,  Jin, Yong-Moon (National Institute of Agricultural Biotechnology) ,  Kim, Ho-il (National Institute of Agricultural Biotechnology) ,  Suh, Seok-Cheol (National Institute of Agricultural Biotechnology)

Abstract AI-Helper 아이콘AI-Helper

Cabbage plants were transformed with the potato proteinase inhibitor II (PINII) gene, bar gene, and hpt gene using Agrobacterium. The expression of the PINII gene was driven by its own promoter which was wound-inducible. Ten transgenic plants were obtained from medium containing hygromycin as a sele...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Weight Increase Index wacalculated by dividing pupal weight by larval weight just after inoculation in diamondback moth, and dividing the weight of larvae fed on the plant three days after inoculation by larval weight just after inoculation in tobacco cutworm. Twenty larvae per treatment were usd for this test, and each treatment was replicated three times. Weight increwe values were compared among treatment sing analysis of variance (ANOVA), and all data present means ± SE.
  • The weight increase of larvae (Weight Increase Index), pupation rate and adIt emergence rate were used as evahjation parameters for determining the effects of transgenic cabbage on the development of diamondback moths. Weight Increase Index wacalculated by dividing pupal weight by larval weight just after inoculation in diamondback moth, and dividing the weight of larvae fed on the plant three days after inoculation by larval weight just after inoculation in tobacco cutworm. Twenty larvae per treatment were usd for this test, and each treatment was replicated three times.
본문요약 정보가 도움이 되었나요?

참고문헌 (31)

  1. Broadway RM (1995) Are insects resistant to plant proteinase inhibitors J Insect Physiol 41(2): 107-116 

  2. Broadway RM, Duffey SS (1986) Plant proteinase inhibitors : mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol 32: 827-833 

  3. Cao J, Tang JD, Shelton AM, Earle ED (1999) Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moths resistant to Cry1C. Molecular Breeding 5: 131-141 

  4. Charity JA, Anderson MA, Bittisnich DJ, Whitecross M, Higgins TJV (1999) Transgenic tobacco and peas expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance. Molecular Breeding 5: 357-365 

  5. Cho HS, Cao J, Ren JP, Earle ED (2001) Control of Lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis crylC gene. Plant Cell Reports 20: 1-7 

  6. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81: 1991-1995 

  7. De Leo F, Bonade-Bottino MA, Ceci LR, Gallerani R, Jouanin L (1998) Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants. Plant Physiol 118: 997-1004 

  8. De Leo F, Gallerani R (2002) The mustard trypsin inhibitor 2 affects the fertility of Spodoptera littoralis larvae fed on transgenic plants, Insect Biochemistry and Molecular Biology 32: 489-496 

  9. Ding LC, Hu CY, Yeh KW, Wang PJ (1998) Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Reports 17: 854-860 

  10. Duan X, Li X, Xue Q, Abo-el-Saad M, Xu D, Wu R (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. National Biotechnology 14(4): 494-498 

  11. Gatehouse AMR, Gatehouse JA (1998) Identifying proteins with insecticidal activity: use of encoding genes to produce insect-resistant transgenic crops. Pestic Sci 52: 165-175 

  12. Giri AP, Harsulkar AM, Deshpande VV, Sainani MN, Gupta VS, Ranjekar PK (1998) Chickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases. Plant Physiol 116: 393-401 

  13. Girard C, metayer ML, Zaccomer B, Bartlet E, Williams I, Bonade-Bottino M, Pham-Delegue MH, Jouanin L (1998) Growth stimulation of beetle larvae reared on a transgenic oilseed rape expressing a cysteine proteinase inhibitor. Journal of Insect Physiology 44: 263-270 

  14. Hilder VA, Gatehouse AMR, Boulter D (1993) Transgenic plants conferring insect tolerance: protease inhibitor approach, In: Kung SD, Wu R (Ed), Transgenic Plants. Engineering and Utilization, 1. Academic Press, New York, pp 317-338 

  15. Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 333: 160-163 

  16. Iyer LM, Kumpalata SP, Chandrasekharan MB, Hall TC (2000) Transgene silencing in monocots. Plant Mol Biol 43: 323-346 

  17. Johnson KA, Narvaez J, An G, Ryan CA (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: Effects on natural defense against Manduca Sexta larvae. Proc. Natl. Acad. Sci USA 86: 9871-9875 

  18. Jongsma MA, Bolter C (1997) The adaptation of insects to plant protease inhibitors. J Insect Physiol 41(10): 885-895 

  19. Jouanin L, Bonade-Bottino M, Girard C, Morrot G, Giband M (1998) Transgenic plants for insect resistance. Plant Science 131: 1-11 

  20. Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends in Plant Science 2(10): 379-384 

  21. Lee YH, Lee SB, Suh SC, Byun MO, Kim HI (2000) Herbicide resistant cabbage (Brassica oleracea ssp. capitata) plants by Agrobacterium-mediated transformation. J Plant Biotechnology 2: 35-41 

  22. McManus MT, White DWR, McGregor PG (1994) Accumulation of a chymotrypsin inhibitor in transgenic tobacco can affect the growth of insect pests. Transgenic Research 3: 50-58 

  23. SAS Institute Inc. (1985) SAS Users Guide : Basics, Version 5 Edition. Cary, NC : SAS Institute Inc, pp 1290 

  24. Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insectresistant transgenic plants. Trends in Biotechnology 16: 168-175 

  25. Schelton AM, Robertson JL, Tang JD (1993) Resistance of the diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringensis subspecies in the field. J Econ Entomol 86: 697-705 

  26. Shure M, Wesslers S, Federoff N (1983) Molecular indentification of the waxy locus in maize. Cell 35: 225-233 

  27. Tabashnik E (1994) Evolution of resistance to Bacillus thuringensis. Annu Rev Entomol 39: 47-79 

  28. Verwoerd TC, Dekker BMM, Hoekema A (1989) A small scale procedure for the rapid isolation of plant RNAs. Nucleic Acid Research 17: 2362 

  29. Williams DL (1997) Isolation and characterization of a serine proteinase inhibitor cDNA (Accession No. U18995) from cabbage. Plant Physiol 114: 747 

  30. Winterer J, Bergelson J (2001) Diamondback moth compensatory consumption of protease inhibitor-transformed plants. Molecular Ecology 10: 1069-1074 

  31. Yeh KW, Lin MI, Tuan SJ, Chen YM, Lin CY, Kao SS (1997) Sweet potato (Ipomoea batatas) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera Iitura. Plant Cell Reports 16: 696-699 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로