$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Simulations of Capacitively Coupled Plasmas Between Unequal-sized Powered and Grounded Electrodes Using One- and Two-dimensional Fluid Models

Abstract

We have examined a technique of one-dimensional (1D) fluid modeling for radio-frequency Ar capacitively coupled plasmas (CCP) between unequal-sized powered and grounded electrodes. In order to simulate a practical CCP reactor configuration with a grounded side wall by the 1D model, it has been assumed that the discharge space has a conic frustum shape; the grounded electrode is larger than the powered one and the discharge space expands with the distance from the powered electrode. In this paper, we focus on how much a 1D model can approximate a 2D model and evaluate their comparisons. The plasma density calculated by the 1D model has been compared with that by a two-dimensional (2D) fluid model, and a qualitative agreement between them has been obtained. In addition, 1D and 2D calculation results for another reactor configuration with equal-sized electrodes have also been presented together for comparison. In the discussion, four CCP models, which are 1D and 2D models with symmetric and asymmetric geometries, are compared with each other and the DC self-bias voltage has been focused on as a characteristic property that reflects the unequal electrode surface areas. Reactor configuration and experimental parameters, which the self-bias depends on, have been investigated to develop the ID modeling for reactor geometry with unequal-sized electrodes.

참고문헌 (21)

  1. Boeuf J. P. and Pitchford L. C., 'Two-dimensional model of a capacitively coupled rf discharge and comparisons with experiments in the Gaseous Electronics Conference reference reactor', Phys. Rev. E, Vol. 51, pp. 1376-1390, 1995 
  2. Joon-Yub Kim, 'A New Sustain Driving Method for AC PDP: Charge-Controlled Driving Method', KIEE Int. Trans. on EA, Vol. 2-C, No. 5, pp. 292-296, 2002 
  3. Herrebout D., Bogaerts A., Yan M., Gijbels R., Goedheer W. and Vanhulsel A., ' Modeling of a capacitively coupled radio-frequency methane plasma; Comparison between a one-dimensional and a two-dimensional fluid model', J. Appl. Phys., Vol. 92, pp. 2290-2295, 2002 
  4. Scharfetter D. L. and Gummel G. K., IEEE Trans. Electron Devices, Vol. ED-16, pp. 64-77, 1969 
  5. Overzet L. J. and Hopkins M. B., 'Spatial variations in the charge density of argon discharges in the Gaseous Electronics Conference reference reactor', Appl. Phys. Lett., Vol. 63, pp. 484-486, 1993 
  6. Richards A. D., Thompson B. E. and Sawin H. H., 'Continuum modeling of argon radio frequency glow discharges', Appl. Phys. Lett., Vol. 50, pp. 492-494, 1987 
  7. Kohler K., Coburn J. W., Horne D. E., Kay E. and Keller J. H., 'Plasma potentials of 13.56MHz rf argon glow discharges in a planar system, J. Appl. Phys., Vol. 57, pp. 59-66, 1985 
  8. Barnes M. S., Colter T. J. and Elta M. E., 'Largesignal time-domain modeling of low-pressure rf glow dishcarges', J. Appl. Phys., Vol. 61, pp. 81-89, 1987 
  9. Joon-Yub Kim and Jong-Sik Lim, 'Current-Controlled Driving Method for AC PDP and Experimental Characterization', KIEE Int. Trans. on EA, Vol. 2-C, No. 5, pp. 253-257, 2002 
  10. Golant V. E., 'Coefficient of ionization and mobility of electrons in argon', Sov. Phys. Tech. Phys., Vol. 4, pp. 680-682, 1959 
  11. Bogaerts A., Neyts E., Gijbels R. and van der Mullen J., 'Gas discharge plasmas and their applications', Spectrochimica Acta Pt. B: At. Spectrosc., Vol. 57, pp. 609-658, 2002 
  12. Soon-Youl So, Oda A., Sugawara H. and Sakai Y., 'Transient behavior of CF4 rf plasmas after step changes of power source voltage', J. Phys. D, Vol. 34, pp. 1919-1927, 2001 
  13. Rauf S. and Kushner M. J., 'Argon metastable densities in radio frequency Ar, Ar/$O_2$ and Ar/$CF_4$ electrical discharge', J. Appl. Phys., Vol. 82, pp. 2805-2813, 1997 
  14. Ward A. L., 'Effect of Space Charge in Cold-Cathode Gas Discharges', Phys. Rev., Vol. 112, pp. 1852-1857, 1958 
  15. McMillin K. B. and Zachariah M. K., 'Twodimensional laser-induced fluorescence imaging of metastable density in low-pressure radio frequency argon plasmas with added $O_2$, $Cl_2$, and $CF_4$', J. Appl. Phys., Vol. 79, pp. 77-85, 1996 
  16. Gogolides E., Stathakopoulos M. and Boudouvis A., 'Modelling of radio frequency plasmas in tetrafluoromethane: the gas phase physics and the role of negative ion detachment', J. Phys. D, Vol. 27, pp. 1878-1886, 1994 
  17. Youl-Moon Sung, Hee-Je Kim and Chung-Hoo Park, 'Laser Thomson Scattering Measurements and Modelling on the Electron Behavior in a Magnetic Neutral Loop Discharge Plasma', KIEE Int. Trans. on EA, Vol. 11C, No. 4, pp. 107-112, 2001 
  18. Lowke J. J. and Davies D. K., 'Properties of electric discharges sustained by a uniform source of ionization', J. Appl. Phys., Vol. 48, pp. 4991-5000, 1977 
  19. Ho-Jun Lee, Dong-Hyun Kim and Chung-Hoo Park, 'A Two-dimensional Steady State Simulation Study on the Radio Frequency Inductively Coupled Argon Plasma', KIEE Int. Trans. on EA, Vol. 2-C, No. 5, pp. 246-252, 2002 
  20. Kulikovsky A. A., 'A More Accurate Scharfetter-Gummel Algorithm of Electron Transport for Semiconductor and Gas Discharge Simulation', J. Comp. Phys., Vol. 119, pp. 149-155, 1995 
  21. Sato N. and Shida Y., 'Two Dimensional Fluid Model of RF Plasmas in $SiH_4$/Ar Mixtures', Jpn. J. Appl. Phys., Vol. 36, pp. 4794-4798, 1997 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일