$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Modified virtual crack closure integral (MVCCI) technique has become very popular for computation of strain energy release rate (SERR) and stress intensity factor (SIF) for 2-D crack problems. The objective of this paper is to propose a numerical integration procedure for MVCCI so as to generalize the technique and make its application much wider. This new procedure called as numerically integrated MVCCI (NI-MVCCI) will remove the dependence of MVCCI equations on the type of finite element employed in the basic stress analysis. Numerical studies on fracture analysis of 2-D crack (mode I and II) problems have been conducted by employing 4-noded, 8-noded (regular & quarter-point), 9-noded and 12-noded finite elements. For non-singular (regular) elements at crack tip, NI-MVCCI technique generates the same results as MVCCI, but the advantage for higher order regular and singular elements is that complex equations for MVCCI need not be derived. Gauss numerical integration rule to be employed for 8-noded singular (quarter-point) element for accurate computation of SERR and SIF has been recommended based on the numerical studies.

참고문헌 (17)

  1. Badari Narayana, K. (1991), "A general procedure for evaluation of crack closure integral in problems of fracture mechanics", Ph.D. Thesis, Indian Institute of Science, Bangalore, India. 
  2. Irwin, G.R. (1958), "Fracture", Handbook Phys., 6, 551-590. 
  3. Schijve, J. (2003), "Fatigue of structures and materials in the 20th century and the state of the art", Int. J. Fatigue, 25, 679-702. 
  4. Badari Narayana, K., Dattaguru, B., Ramamurthy, T.S. and Vijayakumar, K. (1990), "Modified crack closure integral using 6-noded isoparametric quadrilateral singular element", Engg. Fract. Mech., 36, 945-955. 
  5. Rybicki, E.F. and Kanninen, M.F. (1977), "A finite element calculation of stress intensity factors by a modified crack closure integral", Engg. Fract. Mech., 9, 931-938. 
  6. Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, Vol. I: The basis, Vol. II: Solid Mechanics, Butterworth-Hieneman Ltd. 
  7. Dhondt, G., Chergui, A. and Buchholz, F.G. (2001), "Computational fracture analysis of different specimens regarding 3-D and mode coupling effects", Engg. Fract. Mech., 68, 383-401. 
  8. Buchholz, F.G. (1984), "Improved formulae for the FE-calculation of the strain energy release rate by the modified crack closure integral method", Proc. 4th World Congress and Exhibition in FEM, Interlaken, 650- 659. 
  9. Liebowitz, H. and Moyer, E.T. (1989), "Finite element method in fracture mechanics", Comput. Struct., 31, 1-9. 
  10. Rooke, D.P. and Cartwright, D.T. (1976), Compendium of Stress Intensity Factors, Her Majesty's Stationery Office, London. 
  11. Young, M.J. and Sun, C.T. (1993), "On the strain energy release rate for a cracked plate subject to out-of-plane bending moment", Int. J. Fract., 60, 227-247. 
  12. Raju, I.S. (1986), Simple Formulas for Strain Energy Release Rate with Singular Order and Simple Finite Elements, NASA-CR-178186. 
  13. Barsoum, R.S. (1976), "On the use of isoparametric finite elements in linear fracture mechanics", Int. J. Num. Meth. Engg., 10, 25-37. 
  14. Buchholz, F.G., Chergui, A. and Richard, H.A. (2001), "Computational fracture analysis by the MVCCI method regarding 3-D and mode coupling effects for different specimens and loading conditions", Proc. 6th Int. Conf. Biaxial/Multiaxial Fatigue and Fracture, M. De Freitas (Ed.), Portugal, 991-998. 
  15. Cotterell, B. (2002), "The past, present and future of fracture mechanics", Engg. Fract. Mech., 69, 533-553. 
  16. Badari Narayana, K. and Dattaguru, B. (1996), "Certain aspects related to computation by modified crack closure integral", Engg. Fract. Mech., 55, 335-339. 
  17. Owen, D.R.J. and Fawkes, A.J. (1982), Engineering Fracture Mechanics: Numerical Methods and Applications, Pine ridge Press Ltd., Swansea, UK. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일