$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

고밀도 축제식 양식장의 질소역학과 대하 (Fenneropenaeus chinensis) 성장

Nitrogen Dynamics and Growing of Shrimp (Fenneropenaeus chinensis) in the High Density Aquaculture Ponds

Abstract

A mathematical model is used to investigate nitrogen dynamics in the intensive aquaculture ponds in the western coast of Korea. Parameters associated with water quality, sediments and growing of shrimp (Fenneropenaeus chinensis) are measured to calibrate the model for feeding ponds A and B and storage ponds. The model describes the fate of nitrogen including loadings of ammonia from feeds, phytoplankton assimilation, nitrification, sedimentation, volatilization and discharge. The model obtains good agreements with the measured values of TAN $(NH_4,\;NH_3),\;NO(NO_2,\;NO_3)$ and Chl (chlorophyll a). Impacts of water exchange on TAN and Chl are investigated, showing that the range of 0.01-0.2 (/day) cannot effectively reduce TAN but reduces Chl. Nitrogen in the ponds A is removed by sedimentation $66\%,$ volatilization $8\%,$ discharge of particulate and dissolved $8\%.$ The pond B shows $56\%\;and\;26\%$ of sedimentation and volatilization, respectively, to yield $10\%.$ decrease and 8c/o increase compared to those in the pond A. While the pond A has larger area (1.02:0.66 ha) and same stocking density (0.025 md./L) at the beginning of culture, the pond B obtains higher stocking density (0.0065:0.0091 md./L), longer feeding period (103:121 day) and resultant higher shrimp production (1.15:2.13 t/ha/cycle) at harvest. This is possibly due to the hydraulic characteristics driven by paddlewheels. At low ratio of the low speed area and the pond area, the rate of sedimentation is high, while the rate of gas exchange is low. Thus, the measurement and model analysis suggest that water quality and shrimp production are positively correlated with the hydraulic characteristics in the shrimp ponds.

저자의 다른 논문

참고문헌 (37)

  1. Ahmad, T. and C.E. Boyd. 1988. Design and performance of paddle wheel aerators, Aquacult. Eng., 7, 39-62 
  2. Boyd, C.E. and C.S. Tucker. 1995. Sustainability of channel catfish farming. World Aquacult., 26, 45-53 
  3. Boyd, C.E. and C.S. Tucker. 1998. Pond Aquaculture Water Quality Management. Kluwer Academic Publi- shers, Norwell, USA, pp. 548-551 
  4. Boyd, C.E. and B.J. Watten. 1989. Aeration systems in aquaculture. Rev. Aquacult. Sci., 1, 425-472 
  5. Briggs, M.R.P. and S.J. Funge-Smith. 1994. A nutrient bduget of some intensive marine shrimp ponds in Thailand. Aquacult. Fish. Manage., 25, 789-811 
  6. Burford, M.A. and K. Lorenzen. 2004. Modeling nitrogen dynamics in intensive shrimp ponds: the role of sedi- ment remineralization. Aquaculture, 229, 129-145 
  7. Burford, M.A. and A.R. Longmore. 2001. High ammonium production from sediments in hypereutrophic shrimp ponds. Mar. Ecol. Prog. Ser., 224, 187-195 
  8. Chen, J.C. and S.F. Chen. 1992 Effect of nitrite on growth and molting of Penaeus monodon juveniles. Comp. Biochem. Physiol., 101(C), 453-45 
  9. Chen, J.C. and C.Y. Lin. 1992. Lethal effects of ammonia on Penaeus chinesis Osbeck juveniles at different salinity levels. J. Exp. Mar. Bio. Ecol., 156, 139-148 
  10. Dierberg, F.E. and W. Kiattisimkul. 1996. Issues, impacts, and implications of shrimp aquaculture in Thailand. Environ. Manag., 20, 649-666 
  11. Emerson, K., R.C. Russo, R.E. Lund and R.V. Thurston. 1975. Aqueous ammonia equilibrium calculations: Effect of pH and temperature. J. Fish. Res. Board Can., 32, 2379-2388 
  12. Fast, A.W., E.C. Tan, D.F. Stevens, J.C. Olson, J. Qin and D.K. Barclay. 1999. Paddlewheel aerator oxygen transfer efficiencies at three salinities. Aquacult. Eng., 19, 99-103 
  13. Folke, C. and N. Kautsky. 1989. The role of ecosystems for a sustainable development of aquaculture. Ambio, 18, 234-243 
  14. Gross, A., C.E. Boyd and C.W. Wood. 1999. Ammonia volatilization from fresh water fish ponds. J. Environ. Qual., 28, 793-797 
  15. Gross, A., C.E. Boyd and C.W. Wood. 2000. Nitrogen transformations and balance in channel catfish ponds. Aquacult. Eng., 24, 1-14 
  16. Gulland, J.A. 1983. Fish Stock Assessment: A Manual of Basic Methods. Wiley-Interscience, Chichester, UK, pp. 223 
  17. Jackson, C., N. Preston, P. Tompson and M. Burford. 2003. Nitrogen budget and effluent nitrogen com- ponents at an intensive shrimp farm. Aquaculture, 218, 397-411 
  18. Kang, Y.H. 2001. Effects of paddle wheel on water circulation in shrimp culture ponds, J. Aquacult., 14(1), 43-50. (in Korean) 
  19. Kang, J.C., J.K. Koo and J.S. Lee. 2000. Environmental survey for productivity enhancement of cultured fleshy prawn Penaeus chinensis. J. Aquacult., 13(1), 39-46. (in Korean) 
  20. Kang, Y.H., M.O. Lee, S.D. Choi and Y. Sin. 2004. 2-D Hydrodynamic model simulating paddlewheel driven circulation in rectangular shrimp culture pond, Aqua-culture, 231, 163-179 
  21. Lorenzen, K., J. Struve and V.J. Cowan. 1997. Impacts of farming intensity and water management on nitr- ogen dynamics in intensive pond culture: a mathe- matical model applied to Thai commercial shrimp farms. Aquacult. Res., 28, 493-507 
  22. Lovell, R.T. and D. Broce. 1985. Cause of musty flavor in pond-cultured penaeid shrimp. Aquaculture, 50, 169-174 
  23. Montoya, R.A., A.L. Lawrence, W.E. Grant and M. Velasco. 2002. Simulation of inorganic nitrogen dynamics and shrimp survival in an intensive shrimp culture system. Aquacult. Res., 33, 81-94 
  24. Paerl, H.W. and C.S. Tucker. 1995. Ecology of blue-green algae in aquaculture ponds. J. World Aquacult. Soc., 26, 109-131 
  25. Paez-Osuna, F., S.R. Guerrero-Galvan, A.C. Ruiz-Fernan- dez and R. Espinoza- Angulo. 1997. Fluxes and mass balances of nutrients in a semi intensive shrimp farm in north-western Mexico. Mar. Pollut. Bull., 34, 290- 297 
  26. Parsons, T.R., Y. Maita and C.M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, pp. 173 
  27. Peterson, E.L., L.C. Wadhwa and J.A. Harris. 2001. Arrangement of aerators in an intensive shrimp growout pond having a rectangular shape. Aquacult. Eng., 25, 51-65 
  28. Redfield, A.C., B.H. Ketchum and F.A. Richards. 1963. The influence of organisms on the composition of sea-water. In: The Sea. Vol.2, The composition of sea-water comparative and descriptive oceanography. Hill, M.N., ed. John Wiley and Son, New York, pp. 26-77 
  29. Rhee, G.Y. 1978. Effect on N/P atomic ratios and nitrate limitation on algae growth, cell composition and nitrate uptake: a study of dual nutrient limitation. Limnol. Oceanogr., 23, 10-25 
  30. Rhee, G.Y., and I.J. Gotham. 1980. Optimum N:P ratios and coexistence of planktonic algae. J. Phycol., 16, 486-489 
  31. Schnoor, J.L. 1996. Environmental Modeling: fate and transport of pollutants in water, air, and soil, John Wily and Sons. Inc., New York, pp. 62-64 
  32. Seymour, E.A. 1980. The effects and control of algal blooms in fish ponds. Aquaculture, 19, 55-74 
  33. Smith, V.H. 1983. Low nitrogen to phosphorus ratio favors dominance by blue-green algae in lake phytoplankton. Science, 221, 669-671 
  34. Steele, J.H. 1962. Environmental control of photosynthesis in the sea. Limn. Oceanogr., 7, 137-150 
  35. Tucker, C.S. and S.W. Lloyd. 1984. Phytoplankton com- munities in channel catfish ponds. Hydrobiologia, 112, 137-141 
  36. Wickens, J.F. 1976. The tolerance of warm water prawns to recirculated water. Aquaculture, 9, 19-37 
  37. Yusoff, F.M. and C.D. McNabb. 1989. Effects of nutrient available on primary productivity and fish production in fertilized tropical ponds. Aquaculture, 78, 303-319 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일