검색연산자 | 기능 | 검색시 예 |
---|---|---|
() | 우선순위가 가장 높은 연산자 | 예1) (나노 (기계 | machine)) |
공백 | 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 | 예1) (나노 기계) 예2) 나노 장영실 |
| | 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 | 예1) (줄기세포 | 면역) 예2) 줄기세포 | 장영실 |
! | NOT 이후에 있는 검색어가 포함된 문서는 제외 | 예1) (황금 !백금) 예2) !image |
* | 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 | 예) semi* |
"" | 따옴표 내의 구문과 완전히 일치하는 문서만 검색 | 예) "Transform and Quantization" |
본 논문에서는 역해석 방법 중 직접법의 성능에 큰 영향을 미치는 최적화 과정을 인공지능의 한 기법인 유전자알고리즘을 이용하여 역해석 프로그램을 구성하였다. 유전자 알고리즘 및 역해석 기법의 효용성을 검증하기 위하여 과거 역해석 연구 사례 중의 하나인 Gens et al(1987)과 동일한 암반조건을 가진 모델에 대한 역해석을 실시하여 그 결과를 비교
In this study, the back analysis program was developed by applying the genetic algorithm, one of artificial intelligence fields, to the direct method. The optimization process which has influence on the efficiency of the direct method was modulated with genetic algorithm. On conditions that the displacement computed by forward analysis for a certain rock mass model was the same as the displacement measured at the tunnel section, back analysis was executed to verify the validity of the program. Usefulness of the program was confirmed by comparing relative errors calculated by back analysis, which is carried out under the same rock mass conditions as analysis model of Gens et at (1987), one of back analysis case in the past. We estimated the total displacement occurring by tunnelling with the crown settlement and convergence measured at the working faces in three tunnel sites of Kyungbu Express railway. Those data measured at the working face are used for back analysis as the input data after confidence test. As the results of the back analysis, we comprehended the tendency of tunnel behaviors with comparing the respective deformation characteristics obtained by the measurement at the working face and by back analysis. Also the usefulness and applicability of the back analysis program developed in this study were verified.
원문 PDF 다운로드
원문 URL 링크
원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)
DOI 인용 스타일