$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

대형 디젤엔진의 NOx 저감을 위한 연료분사노즐 최적화 연구

The Optimization of Fuel Injection Nozzles for the Reduction of NOx Emissions in a Large Diesel Engine

Abstract

Numerical simulations and experiments have been carried out to investigate the effect of fuel injection nozzles on the combustion and NOx formation processes in a medium-speed marine diesel engine. Spray visualization experiment was performed in the constant-volume high-pressure chamber to verify the numerical results on the spray characteristics such as spray angle and spray tip penetration. Time-resolved spray behaviors were captured by high-speed digital camera and analyzed to extract the information on the spray parameters. Spray and combustion phenomena were examined numerically using FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Numerical results were verified with experimental data such as cylinder pressure, heat release rate and NOx emission. Finally, the effects of fuel injection nozzles on the engine performance were investigated numerically to find the optimum nozzle parameters such as fuel injection angle, nozzle hole diameter and number of nozzle holes. From this study, the optimum fuel injection nozzle (nozzle hole diameter, 0.32 mm, number of nozzle holes, 8 and fuel injection angle, $148^{\circ}$) was selected to reduce both the fuel consumption and NOx emission. The reason for this selection could be explained from the highest fuel-air mixing in the early phase of injection due to the longest spray tip penetration and the highest heat release rate after $19^{\circ}$ ATDC due to the increased injection duration.

참고문헌 (17)

  1. M. A. Patterson, S. C. Kong, G. J. Hampson and R. D. Reitz, 'Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions,' SAE 940523, 1994 
  2. K. S. Cha, W. I. Chung and C. G. Park, 'A Study on Spray Behaviors with Variation ofNozzle Diameter in the Diesel Combustion Chamber,' Transactions of the KSAE, Vol.8, No.3, pp.18-27, 2000 
  3. H. C. Yang, Y. K. Choi and H. S. Ryou, 'A Numerical Study on the Break-up of the Fuel Spray in Diesel Engine,' Transactions of the KSAE, Vol.3, No.6, pp.8-22, 1995 
  4. Y. H. Chi, J. H. Lee and E. S. Kim, An Experimental Study on Spray Pattem and Droplet Size Distribution of Diesel Spray,' Journal of the KSAE, Vol.14, No.3, pp.102-108, 1992 
  5. A. AI-Sened and E. R. Karimi, 'Strategies for NOx Reduction on Heavy Duty Engies,' CIMAC Congress, Hamburg, pp.272-280, 2001 
  6. R. D. Reitz and R. Diwakar, 'Structure of High-Pressure Fuel Sprays,' SAE 870598, 1987 
  7. L. Schiller and A. Z. Naumann, VDI 77,pp.318-320, 1993 
  8. B. F. Magnussen and B. H. Hjertager, 'On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion,' Sixteenth International Symposium on Combustion, 1977 
  9. J. K. Dukowicz, 'A Particle-Fluid Numehcal Model for Liquid Sprays,' J. Comp. Physics, Vol.35, pp. 229-253, 1980 
  10. C. K. Sarre, S. C. Kong and R. D. Reitz, 'Modeling the Effects of Injector Nozzle Geometry on Diesel Sprays,' SAE Technical Paper Series 1999-01-0912, 1999 
  11. A. D. Gosman and E. Ioarmides, 'Aspects of Computer Simulation of Liquid-Fueled Combustors,' AIAA, pp.81-323, 1981 
  12. J. K. Dukowicz, 'Quasi-steady Droplet Changein the Presence of Convection, Informal Report Los Alsmos Scientific Laboratory,' LA7997-MS 
  13. M. A. Theobald and W. K. Cheng, 'A Numerical Study of Diesel Ignition,' Energy-sources Technology Conference and Exhibition, 87-FE-2, 1987 
  14. J. B. Heywood, Internal Combustion Engine Fundamentals, pp.572-577, McGraw-Hill, 1988 
  15. J. Y. Kim, W. H. Yoon and J. S. Ha, 'A Study on the Numerical Prediction of Heat Release Rate and NOx Production in Medium-Speed Marine Diesel Engines,' ASME ICED/RTD Fall Technical Conference, Erie, Pennsylvania, pp.137, 2003 
  16. R. D. Reitz, 'Modeling Atomization Processes in High-Pressure Vaporizing Sprays,' Atomization and Spray Technology, Vol.3, pp.309-33, 1987 
  17. J. Senda, M. Kobayashi, S. Iwashita and H.Fujimoto, 'Modeling of Diesel Spray Impin-gement on a Flat Wall,' SAE 941894, 1994 

이 논문을 인용한 문헌 (2)

  1. Sim, Han-Sub 2011. "A Study on NOx Reduction for a Small Marine Diesel Engine" 한국기계가공학회지 = Journal of the Korean Society of Manufacturing Process Engineers, 10(5): 79~84 
  2. Sim, Han-Sub 2013. "A Study for Development of a Marine Diesel Engine from a 500Ps Commercial Vehicle Diesel Engine" 한국기계가공학회지 = Journal of the Korean Society of Manufacturing Process Engineers, 12(6): 125~131 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일