검색연산자 | 기능 | 검색시 예 |
---|---|---|
() | 우선순위가 가장 높은 연산자 | 예1) (나노 (기계 | machine)) |
공백 | 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 | 예1) (나노 기계) 예2) 나노 장영실 |
| | 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 | 예1) (줄기세포 | 면역) 예2) 줄기세포 | 장영실 |
! | NOT 이후에 있는 검색어가 포함된 문서는 제외 | 예1) (황금 !백금) 예2) !image |
* | 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 | 예) semi* |
"" | 따옴표 내의 구문과 완전히 일치하는 문서만 검색 | 예) "Transform and Quantization" |
최근 기업들이 고객관계관리의 중요성을 인식함에 따라 고객에 대한 이해의 필요성이 증대되고 있다. 고객의 직업은 고객을 이해하는데 있어서 매우 중요한 정보이다. 하지만 대부분의 고객들이 자신의 직업을 노출하는 것을 꺼리기 때문에 기업에게 그들의 직업을 알려주지 않는 것이 다반사이고, 심지어는 잘못된 직업을 알려주기도 한다. 본 연구의 대상은 이동통신서비스 업체이다. 본 연구에서 우리는 통화상세이력 데이터를 이용하여 고객의 직업을 판정하는 모델을 구축하였다. 인공신경망을 이용해서 우리는 두 단계로 이루어진 직업판정 모델을 구축하였다. 첫번째 단계에서는 먼저 4개의 직업군을 판정하였고, 두 번째 단계에서 이 4개의 직업군을 세분하여 총 7개의 직업을 판정하였다. 이러한 방식으로 7개의 직업을 판정한 모델의 최종적중률은
Recently, as most companies recognize the importance of the customer relationship management, they strongly believe that they must know who their customers are. The job of a customer is very important information for us to understand the customer. However, since most customers are reluctant to reveal them-selves, they do not let us know their jobs, and even provide false information about their jobs. The target domain of our research is mobile telecommunication. In this research, we developed a system that identifies the customer's job by utilizing the Call Detail Record. Using artificial neural networks, we developed a two-step Job Identification System. In the first step, it identifies the four job classes, then in the second step, it subdivides these four job classes into seven jobs. The accuracy of identifying the seven jobs was
원문 PDF 다운로드
원문 URL 링크
원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)
DOI 인용 스타일