• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

A Proposal for Optical Diagnostics Through the Enhancement of Diffraction Patterns Using Thin-film Interference Filters


Coarse clumping of solid materials within diseased biological cells can have a marked influence on the light scattering pattern. Perturbations in refractive index lead to distinct varia­tions in the cytometric signature, especially apparent over wide scattering angles. The large dynamic range of scattering intensities restricts collection of data to narrow angular intervals be­lieved to have the highest potential for medical diagnosis. We propose the use of an interfer­ence filter to reduce the dynamic range. Selective attenuation of scattering intensity levels is expected to allow simultaneous data collection over a wide angular interval. The calculated angu­lar transmittance of a commercial shortwave-pass filter of cut-off wavelength 580 nm indicates significant attenuation of scattering peaks below ${\~}\;10^{circ}$, and reasonable peak equalization at higher angles. For the three-dimensional calculation of laser light scattered by cells we use a spectral method code that models cells as spatially varying dielectrics, stationary in time. How­ever, we perform preliminary experimental testing with the interference filter on polystyrene microspheres instead of biological cells. A microfluidic toolkit is used for the manipulation of the microspheres. The paper intends to illustrate the principle of a light scattering detection system incorporating an interference filter for selective attenuation of scattering peaks.

참고문헌 (22)

  1. Vo-Dinh, T., B. M. Cullum, and D. L. Stokes (2001) Nanosensors and biochips: Frontiers in biomolecular diagnostics. Sens. Actuat. B. Chem. 74: 2-11 
  2. Mourant, J. R., J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson (1998) Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 37: 3586-3593 
  3. Backman, V, V Gopal, M. Kalashnikov, K. Badizadegan, R. Gunar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. Feld (2001) Measuring Cellu-lar structure at submicrometer scale with light scattering spectroscopy. IEEE J. Select. Top. Quant. Electron. 7:887-893 
  4. Shao, Y. (2002) Modeling of Light Propagation in Biologi-cal Tissues. Ph.D. Thesis. University of Alberta, Edmonton Alberta, Canada 
  5. Dunn (1997) Light Scattering Properties of Cells. Ph.D. Thesis. University of Texas at Austin, Austin, Texas, USA 
  6. Quarteroni, A., R. Sacco, and F. Saleri (2000) Numerical Mathematics (Texts in Appl. Math., Vol. 37). Springer Verlag, New York, USA 
  7. Roper Scientific (2002), available online: http://www. roperscientific. com/library_enc_signal.shtml 
  8. Stefanita, C.-G., Y. Shao, W. Rozmus, C. E. Capjack, and C. J. Backhouse, Filtering scattered light in microchip-based cell diagnostics IEEE Trans. Instr. Meas. (in press) 
  9. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang (1988) Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin, Germany 
  10. Azzam, R. M. A. and N. M. Bashara (1977) Ellipsometry and Polarized Light. North Holland 
  11. Schrum, D., C. Culbertson, S. Jacobson, and M. Ramsey (1999) Microchip-flow cytometry using electrokinetic fo-cusing. Anal. Chem. 71: 4173-4177 
  12. Altendorf, E. H. and P. Yager (1998) Silcon microchannel optical flow cytometer. US Patent 5,726,751 
  13. Interference filter manufacturers' website or product catalogues: e.g. Coherent Inc., Andover Corporation, Melles Griot, Oriel etc 
  14. Shao, Y., A. V. Maxim'ov, I. G. Ourdev, W. Rozmus, and C. E. Capjack (2001) Spectral method simulations of light scattering by biological cells. IEEE J. Quant. Electron. 37:617-625 
  15. Drezek, R., A. Dunn, and R. Richards-Kortum (1996) Three-dimensional computation of light scattering from cells. IEEE J. Select. Top. Quant. Electron. 2: 898-905 
  16. Starlight Xpress (2002), available online: http://www.starlightccd.com 
  17. Drezek, R., A. Dunn, and R. Richards-Kortum (2000) A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges. Opt. Express 6: 147-157 
  18. Amin, M. R., C. E. Capjack, P. Frycz, W. Rozmus, and V. T. Tikhonchuk (1993) Two-dimensional simulations of stimulated Brillouin scattering in laser produced plasma. Phys. Rev. Lett. 71:81-84 
  19. Crabtree, H. J., E. C. S. Cheong, D. A. Tilroe, and C. J. Backhouse (2001) Microchip injection and separation anomalies due to pressure effects. Anal. Chem. 73: 4079-4086 
  20. Mie, G. (1908) Considerations on the optics of turbid media, especially colloidal metal solutions. Ann. Phys. 25:377-442 
  21. Drezek, R., A. Dunn, and R. Richards-Kortum (1999) Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements. Appl. Opt. 38: 3651-3661 
  22. Kohl, M.and M. Cope (1994) Influence of glucose Con-centration on light scattering in tissue. Opt. Lett. 17: 2170-2172 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일