$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

The objective of this study is to improve cephalosporin C (CPC) production byoptimization of medium and culture conditions. A statistical method was introduced to optimize the main culture medium. The main medium for CPC production was optimized using a statistical method. Glucose and corn steep liquor (CSL) were found to be the most effective factors for CPC production. Glucose and CSL were optimized to 2.84 and $6.68\%$, respectively. CPC produc­tion was improved $50\%$ by feeding of $5\%$ rice oil at day 3rd and 5th day during the shake flask culture of C acremonium M25. The effect of agitation speeds on CPC production in a 2.5-L bio­reactor was also investigated with fed-batch mode. The maximum cell mass (54.5 g/L) was obtained at 600 rpm. However, the maximum CPC production (0.98 g/L) was obtained at 500 rpm. At this condition, the maximum CPC production was improved about $132\%$ compared to the re­sult with batch flask culture.

참고문헌 (17)

  1. Basak, S., A. Velayudhan, and M. R. Ladisch (1995) Simulation of diauxic production of cephalosporin C by Cephalosporium acremonium: Lag model for fed-batch fermentation. Biotechnol. Prog. 11: 626-631 
  2. Vicik, S. M., A. J. Fedor, and R. W. Swartz (1990) Defining an optimum carbon source/methionine feed strategy for growth and cephalosporin C formation by Cephalosporium acremonium. Biotechol. Prog. 6: 333-340 
  3. Lee, M. S., J. S. Lim, C. H. Kim, K. K. Oh, S. I. Hong, and S. W. Kim (2001) Effects of nutrients and culture conditions on morphology in the seed culture of Cephalosporium acremonium ATCC 20339. Biotechnol. Bioprocess Eng. 6: 156-160 
  4. Karaffa, L., E. Sandor, J. Kozma, and A. Szentirmai (1997) Methionine enhances sugar consumption, fragmentation, vacuolation and cephalosporin C production in Acremonium chrysogenum. Process Biochem. 32: 495-499 
  5. Kozma, J. and L. Karaffa (1996) Effect of oxygen on the respiratory system and cephalosporin C production in Acemonium chrysogenum. J. Biotechnol. 48: 59-66 
  6. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 
  7. Cruz, A. J. G., A. S. Silva, M. L. G. C. Araujo, R. C. Giordano, and C. O. Hokka (1999) Modelling and optimization of the cephalosporin C production bioprocess in a fed batch bioreactor with invert sugar as substrate. Chem. Eng. Sci. 54: 3137-3142 
  8. Lee, M. S., J. S. Lim, C. H. Kim, K. K. Oh, D. R. Yang, and S. W. Kim (2001) Enhancement of Cephalosporin C production by cultivation of Cephalosporium acremonium M25 using a mixture of inocula. Lett. Appl. Microbiol. 32: 402-406 
  9. Matsumura, M., T. Imanaka, T. Yoshida, and H. Taguchi (1981) Modelling of cephalosporin C production and its application to fed-batch culture. J. Ferment. Technol. 59: 115-123 
  10. Revin, V. V., S. A. Kasatkin, G. L. Cherkasova, V. T. Nikolaev, N. S. Iamashkina, M. N. Chabushkina, O. A. Popova, and V. F. Belianina (1991) Effect of the quality of fat substrate on the dynamics of fatty acid utilization during biosynthesis of cephalosporin C. Antibiot. Khimioter. 36: 5-8 
  11. Jurgens, M., G. Seidel, and K. Schugerl (2002) Production of cephalosporin C by Acremonium chrysogenum semisynthetic medium. Process Biochem. 38: 263-272 
  12. Lim, J. S., J. H. Kim, C. Y. Kim, and S. W. Kim (2002) Morphological and rheological properties of culture broth of Cephalosporium acremonium M25. Korea-Australia Rheology J. 14: 11-16 
  13. Murty, V. R., J. Bhat, and P. K. A. Muniswaran (2002) Hydrolysis of rice bran oil using immobilized lipase in a stirred batch reactor. Biotechnol. Bioprocess Eng. 7: 367-370 
  14. Chu, W. B. Z. and A. Constantinides (1988) Modeling, optimization, and computer control of the cephalosporin C fermentation process. Biotechnol. Bioeng. 32: 277-288 
  15. Huh, B. K., D. W. Cho, H. J. Kim, C. I. Park, and H. J. Suh (2002) Effect of culture conditions on growth and production of docosahexaenoic acid (DHA) using Thrauchytrium aureum ATCC 34304. Biotechnol. Bioprocess Eng. 7: 10-15 
  16. Marshall, W. F. and J. E. Blair (1999) The cephalosporins: Symposium on Antimicrobial Agents, Part V. Mayo Clin. Proc. 74: 187-195 
  17. Park, Y. S., I. Momose, K. Yahiro, and M. Okabe (1994) Improvement of cephamycin C production using soybean oil as the sole carbon source. Appl. Microbiol. Biotechnol. 40: 773-779 

이 논문을 인용한 문헌 (4)

  1. 2005. "" Biotechnology and bioprocess engineering, 10(3): 248~253 
  2. 2005. "" Biotechnology and bioprocess engineering, 10(4): 296~303 
  3. 2005. "" Biotechnology and bioprocess engineering, 10(6): 510~515 
  4. 2010. "" Journal of microbiology and biotechnology, 20(3): 480~484 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일