• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Optimized Conditions for In Situ Immobilization of Lipase in Aldehyde-silica Packed Columns


Optimal conditions for the in situ immobilization of lipase in aldehyde-silica packed columns, via reductive amination, were investigated. A reactant mixture, containing lipase and sodium borohydride (NaCBH), was recirculated through an aldehyde-silica packed column, such that the covalent bonding of the lipase, via amination between the amine group of the enzyme and the aldehyde terminal of the silica, and the reduction of the resulting imine group by NaCBH, could occur inside the bed, in situ. Mobile phase conditions in the ranges of pH $7.0{\~}7.8$, temperatures between $22{\~}28^{circ}C$ and flow rates from $0.8{\~}1.5\;BV/min$ were found to be optimal for the in situ immobilization, which routinely resulted in an immobilization of more than 70 mg­lipase/g-silica. Also, the optimal ratio and concentration for feed reactants in the in situ immobilization: mass ratio [NaCBH]/[lipase] of 0.3, at NaCBH and lipase concentrations of 0.75 and 2.5 g/L, respectively, were found to display the best immobilization characteristics for concentrations of up to 80 mg-lipase/g-silica, which was more than a 2-fold increase in immobilization compared to that obtained by batch immobilization. For tributyrin hydrolysis, the in situ immobilized lipase displayed lower activity per unit mass of enzyme than the batch-immobilized or free lipase, while allowing more than a $45\%$ increase in lipase activity per unit mass of silica compared to batch immobilization, because the quantity of the immobilization on silica was aug­mented by the in situ immobilization methodology used in this study.

참고문헌 (17)

  1. Wang, T. H. and W. C. Lee (2003) Immobilization of proteins on magnetic nanoparticles. Biotechnol. Bioprocess Eng. 8: 263-267. 
  2. Regan, D. L., P. Dunnill, and M. D. Lilly (1974) Immobilized enzyme reaction stability: Attrition of the support material. Biotechnol. Bioeng. 16: 333-343 
  3. Domenici, E., C. Bertucci, P. Salvadori, G. Felix, I. Cahagne, S. Motellier, and I. W. Wainer (1990) Synthesis and chromatographic properties of an HPLC chiral stationary phase based upon human serum albumin. Chromatographia 29: 170-176 
  4. Larsson, P. O. (1984) High-performance liquid affinity chromatography. Meth. Enzymol. 104: 212-223 
  5. Fessenden, R. J., J. S, Fessenden, and M. W. Logue (1998) Organic Chemistry. 6th ed., pp. 771-772. Brooks/ Cole, CA, USA. 
  6. Sigma-Aldrich, Inc. (2004) http://www.sigmaaldrich.com, L3126 Specification sheet 
  7. Cheetham, P. S. J. (1995) Principles of industrial biocatalysis and bioprocessing. pp. 206-218. In: A. Wiseman (ed.). Handbook of Enzyme Biotechnology, 3rd eds., Ellis Horwood, UK 
  8. Massolini, G., E. Galleri, E. de Lorenzi, M. Pregnolato, M. Terreni, G. Felix, and C. Gandini (2001) Immobilized penicillin G acylase as reactor and chiral selector in liquid chromatography. J. Chromatogr. A 921: 147-160 
  9. Mutty, V. R., J. Bhat, and P. K. A. Muniswaran (2002) Hydrolysis of rice bran oil using immobilized lipase in a stirred batch reactor. Biotechnol. Bioprocess Eng. 7: 367-370 
  10. Brodelius, P. (1978) Industrial applications of immobilized biocatalysts. Adv. Biochem. Eng. 10: 76-129 
  11. R. A. Messing (1978) Carriers for immobilized biologically active systems. Adv. Biochem. Eng. 10: 51-73 
  12. Murty, V. R., J. Bhat, and P. K. A. Muniswaran (2002) Hydrolysis of oils by using immobilized lipase enzyme: A review. Biotechnol. Bioprocess Eng. 7: 57-66 
  13. Chibata, I., T. Tosa, T. Sato, and T. Mori (1976) Production of L-amino acids by aminoacylase adsorbed on DEAE-Sephadex. Meth. Enzymol. 44: 746-759 
  14. Rapp, P. (1995) Production, regulation, and some properties of lipase activity from Fusarium oxysporum f. sp. vasinfectum. Enzyme Microb. Technol. 17: 832-838 
  15. Erlandsson, P., L. Hansson, and R. Isaksson (1986) Direct analytical preparative resolution of enantiomers using albumin adsorbed to silica as a stationary phase. J. Chromatogr. 370: 470-483 
  16. Pitcher, W. H. Jr. (1978) Design and operation of immo-bilized enzyme reactors. Adv. Biochem. Eng. 10: 1-26 
  17. Uhlig, H. (1998) Industrial Enzyme and Their Applications. pp. 179-190. John Wiley & Sons, NY, USA 

이 논문을 인용한 문헌 (2)

  1. 2005. "" Biotechnology and bioprocess engineering, 10(4): 329~333 
  2. 2005. "" Biotechnology and bioprocess engineering, 10(1): 99~102 


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일