$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Application of Single-Compartment Bacterial Fuel Cell (SCBFC) Using Modified Electrodes with Metal Ions to Wastewater Treatment Reactor

Abstract

The SCBFC was composed of bilayered cathode, the outside of which was modified with $Fe^{3+}$ (graphite-Fe(III) cathode) and the inside of which was porcelain membrane, and of an anode which was modified with $Mn^{4+}$ (graphite­Mn(lV) anode). The graphite-Fe(III), graphite-Mn(IV), and porcelain membrane were designed to have micropores. The outside of the cathode was exposed to the atmosphere and the inside was contacted with porcelain membrane. In all SCBFCS the graphite-Fe(III) was used as a cathode, and graphite-Mn(IV) and normal graphite were used as anodes, for comparison of the function between normal graphite and graphite-Mn(IV) anode. The potential difference between graphite-Mn(IV) anode and graphite-Fe(III) cathode was about 0.3 volt, which is the source for the electron driving force from anode to cathode. In chemical fuel cells composed of the graphite-Mn(IV) anode and graphite-Fe(III) cathode, a current of maximal 13 mA was produced coupled to oxidation of NADH to $NAD^{+}$ the current was not produced in SCBFC with normal graphite anode. When growing and resting cells of E. coli were applied to the SCBFC with graphite-Mn(IV) anode, the electricity production and substrate consumption were 6 to 7 times higher than in the SCBFC with normal graphite anode, and when we applied anaerobic sewage sludge to SCBFC with graphite-Mn(IV) anode, the electricity production and substrate consumption were 3 to 5 times higher than in the SCBFC with normal graphite anode. These results suggest that useful electric energy might possibly be produced from SCBFC without electron mediators, electrode-active bacteria, and extra energy consumption for the aeration of catholyte, but with wastewater as a fuel.

저자의 다른 논문

참고문헌 (28)

  1. Benetto, H. P., G. M. Delaney, J. R. Mason, S. D. Roller, J. L. Stirling, and C. F. Thurston. 1985. The sucrose fuel cell: Efficient biomass conversion using a microbial catalyst. Biotech. Lett. 7: 699-704 
  2. Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127- 131 
  3. Lovely, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259-287 
  4. Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61 
  5. Park, D. H. and J. Gregory Zeikus. 2002. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotech. Bioeng. 81: 348-356 
  6. Tanaka, K., R. Tamamushi, and T. Ogawa. 1985. Bioelectrochemical fuel-cell operated by the cyanobacterium, Anabaena variabilis. Chem. Technol. Biotech. 35B: 191- 197 
  7. Lee, J. W., A. Goel, M. M. Ataai, and M. M. Domach. 2003. Flux regulation patterns and energy audit of E. coli B/r and K-12. J. Microbiol. Biotechnol. 12: 273-278 
  8. Tanaka, K., C. A. Vega, and R. Tamaushi. 1983. Mediating effects of ferric chelate compounds in microbial fuel cell. Bioelectrochem. Bioenerg. 11: 135-143 
  9. Park, J. B., H. W. Lee, S. Y. Lee, J. O. Lee, I. S. Bang, E. S. Choi, D. H. Park, and Y. K. Park. 2002. Microbial community analysis of 5-stage biological nutrient removal process with step feed system. J. Microbiol. Biotechnol. 12: 929-935 
  10. Lovely, D. R., S. J. Givannoni, D. C. White, J. E. Champine, E. J. P. Phillips, Y. Gorby, and S. Goodwin. 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metal. Arch. Microbiol. 159: 336-344 
  11. Bae, J. W., S. K. Rhee, I. S. Kim, S. H. Hyun, and S. T. Lee. 2002. Increased microbial resistance to toxic wastewater by sludge granulation in upflow anaerobic sludge blanket reactor. J. Microbiol. Biotechnol. 12: 901-908 
  12. Habermann, W. and E. H. Pommer. 1991. Biological fuel cells with sulphite storage capacity. Appl. Microbiol. Biotechnol. 35: 128-133 
  13. Park, D. H., B. H. Kim, B. Moore, H. A. O. Hill, M. K. Song, and H. W. Rhee. 1997. Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds. Biotechnol. Tech. 11: 145-148 
  14. Park, D. H. and B. H. Kim. 2001. Growth properties of the iron-reducing bacteria, Shewanella putrefaciens IR-1 and MR-1 coupling to reduction of Fe(III) to Fe(II). J. Microbiol. 39: 273-278 
  15. Thurston, C. F., H. P. Bennetto, G. M. Delaney, J. R. Mason, S. D. Roller, and J. L. Stirling. 1985. Glucose metabolism in a microbial fuel cell, stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J. Gen. Microbiol. 131: 1393-1401 
  16. Hoogstraten, C. G., C. V. Grant, T. E. Horton, V. J. DeRose, and R. D. Britt. 2002. Structural analysis of metal ion ligation to nucleotides and nucleic acids using pulsed EPR spectroscopy. J. Am. Chem. Soc. 124: 834-842 
  17. Jeon, C. O., S. H. Woo, and J. M. Park. 2003. Microbial communities of activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose. J. Microbiol. Biotechnol. 13: 385-393 
  18. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy generation. J. Bacteriol. 181: 2403-2410 
  19. Park, D. H. and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red and an electronophore. Appl. Environ. Microbiol. 66: 1292-1297 
  20. Allen, R. M. and H. P. Bennetto. 1993. Microbial fuel-cells: Electricity production from carbohydrates. Appl. Biochem. Biotechnol. 39/40: 27-40 
  21. Kim, N., Y. Choi, S. Jung, and S. Kim. 2001. Development of microbial fuel cells using Proteus vulgaris. Bull. Kor. Chem. Soc. 21: 44-48 
  22. Allen, M. J. 1972. Cellular electrophysiology, pp. 247-283. In J. R. Norris and D. W. Ribbons (eds.), Methods in Microbiology. Academic Press, New York, N.Y., U.S.A 
  23. Lovely, D. R. and E. Philip. 1988. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Appl. Environ. Microbiol. 51: 683-689 
  24. Myer, C. R. and K. H. Nelson, 1990. Respiration-linked proton translocation coupled to anaerobic reduction of manganese (IV) and iron (III) in Shewanella putrefaciens MR-1. J. Bacteriol. 172: 6232-6238 
  25. Roller, S. D., H. P. Bennetto, G. M. Delaney, J. R. Mason, J. L. Stirling, and C. F. Thurston. 1984. Electron-transfer coupling in microbial fuel cells: 1. Comparison of redoxmediator reduction rates and respiration rates of bacteria. J. Chem. Tech. Biotechnol. 34B: 3-12 
  26. Eric, E. R. and D. R. Lovely, 1993. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl. Environ. Microbiol. 59: 734-742 
  27. Willner, I., G. Arad, and E. Katz. 1998. A biofuel cell based on pyrroloquinoline quinone and microperoxidase-11 monolayer-functionalized electrode. Bioelectrochem. Bioenerg. 44: 209-214 
  28. Park, D. H., S. K. Kim, I. H. Shin, and Y. J. Jeong. 2000. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotech. Lett. 22: 1301-1304 

이 논문을 인용한 문헌 (3)

  1. 2007. "" Journal of microbiology and biotechnology, 17(2): 218~225 
  2. 2009. "" Biotechnology and bioprocess engineering, 14(6): 687~693 
  3. 2009. "" Journal of microbiology and biotechnology, 19(9): 1019~1027 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일