$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

The soil bacterial community and some inoculated bacteria were monitored to assess the microbial responses to prescribed fire in their microcosm. An acridine orange direct count of the bacteria in the unburned control soil were maintained at a relatively stable level $(2.0\~2.7\times10^9\;cells/g^{-1}{\cdot}soil)$ during the 180 day study period. The number of bacteria in the surface soil was decreased by fire, but was restored after 3 months. Inoculation of some bacteria increased the number of inoculated bacteria sev­eral times and these elevated levels lasted several months. The ratios of eubacteria detected by a flu­orescent in situ hybridization (FISH) method to direct bacterial count were in the range of $60\~80\%$ during the study period, with the exception of some lower values at the beginning, but there were no definite differences between the burned and unburned soils or the inoculated and uninoculated soils. In the unburned control soil, the ratios of $\alpha-,\beta-\;and\;\gamma-subgroups$ of the proteobacteria, Cytophaga-Fla­vobacterium and other eubacteria groups to that of the entire eubacteria were 13.7, 31.7, 17.1, 16.8 and $20.8\%,$ respectively, at time 0. The overall change on the patterns of the ratios of the 5 subgroups of eubacteria in the uninoculated burned and inoculated soils were similar to those of the unburned con­trol soil, with the exception of some minor variations during the initial period. The proportions of each group of eubacteria became similar in the different microcosms after 6 months, which may indicate the recovery of the original soil microbial community structure after fire or the inoculation of some bac­teria. The populations of Azotobacter vinelandii, Bacillus megaterium and Pseudomonas fluorescens, which had been inoculated to enhance the microbial activities, and monitored by FISH method, showed similar changes in the microcosms, and maintained high levels for several months.

참고문헌 (24)

  1. Acea, M., A. Prieto-Fernandez, and N. Diz-Cid. 2003. Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biol. Biochem. 35, 513-524 
  2. Atlas, R. and R. Bartha. 1998. Microbial Ecology: fundamentals and applications. Benjamin/Cummings, Menlo Park, CA 
  3. Belkova, N.L., V.V. Dryukker, S.H. Hong, and T.S. Ahn. 2003. A study of the composition of the aquatic bacterial community of Lake Baikal by the in situ hybridization method. Microbiol. 72, 244-245 
  4. Harris, P., H. Schomberg, P. Banks, and J. Giddens. 1995. Burning, tillage and herbicide effects on the soil microflora in a wheatsoybean double-crop system. Soil Biol. Biochem. 27, 153-156 
  5. Neary, D., C. Klopatek, L. DeBano, and P. Ffolliott. 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecol. Manage. 122, 51-71 
  6. Vázquez, F., M. Acea, and T. Carballas. 1993. Soil microbial populations after wildfire. FEMS Microbiol. Ecol. 13, 93-104 
  7. Gabos, S., M. Ikonomou, D. Schopflocher, B. Fowler, J. White, E. Prepas, D. Prince, and W. Chen. 2001. Characteristics of PAHs, PCDD/Fs and PCBs in sediment following forest fires in Northern Alberta. Chemosphere. 43, 709-719 
  8. Walstad, J., S. Radosevich, and D. Sandberg. 1990. Introduction to natural and prescribed fire in Pacific Northwest forests, p. 3-5. In J.D. Walstad, S.R. Radosevich, and D.V. Sandberg (eds.) Natural and Prescribed Fire in Pacific Northwest Forests Oregon State University Press, Corvallis 
  9. MacGregor, B. 1999. Molecular approaches to the study of aquatic microbial communities. Curr. Opin. Biotechnol. 10, 220-224 
  10. Ellis, R.J. 2004. Artificial soil microcosms: a tool for studying microbial autecology under controlled conditions. J. Microbiol. Methods 56, 287-290 
  11. Fischer, K., D. Hahn, W. Honerage, F. Schonholzer, and J. Zeyer. 1995. In situ detection of spores and vegetative cells of Bacillus megaterium in soil by whole cell hybridization. Syst. Appl. Microbiol. 18, 265-273 
  12. Manz, W., R. Amann, W. Ludwig, and M. Wagner. 1992. Phylogentic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: Problems and solutions. Syst. Appl. Micorbiol. 15, 593-600 
  13. Trebesius, K., R. Amann, W. Ludwig, K. Mühlegger, and K. Schleifer. 1994. Identification of whole fixed bacterial cells with nonradioactive rRNA targeted transcript probes. Appl. Environ. Microbiol. 60, 3228-3235 
  14. Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv. 16, 729-770 
  15. Glöckner, F.O., B.M. Fuchs, and R. Amann. 1999. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65, 3721-3726 
  16. Sharma, G.D. 1981. Effect of fire on soil microorganisms in a Meghalaya pine forest. Folia Microbiol. 26, 321-327 
  17. Amann, R., W. Ludwig, and K. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169 
  18. Baath, E., A. Frostegard, T. Pennanen, and H. Fritze. 1995. Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol. Biochem. 27, 229-240 
  19. Hobbie, J., R. Daley, and S. Japer. 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225-1228 
  20. Acea, M. and T. Carballas. 1996. Changes in physiological groups of microorganisms in soil following wildfire. FEMS Microbiol. Ecol. 20, 33-39 
  21. Hicks, R., R. Amann, and D. Stahl. 1992. Dual staining of natural bacterioplankton with 4, 6-diamidino-2-phenylindole and fluorescent oligonucelotide probes targeting kingdom level 16S rRNA sequences. Appl. Environ. Microbiol. 58, 2158-2163 
  22. Martínez, M., J. Díaz-Ferrero, R. Martí, F. Broto-Puig, L. Comellas, and M. Rodríguez-Larena. 2000. Analysis of dioxin-like compounds in vegetation and soil samples burned in Catalan forest fire. Comparison with the corresponding unburned material. Chemosphere 41, 1927-1935 
  23. Alfreider, A., J. Pernthaler, R. Amann, B. Sattler, F. Glöckner, A. Wille, and R. Psenner. 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl. Environ. Microbiol. 62, 2138-2144 
  24. Ahn, T., J. Lee, D. Lee, and H. Song. 2002. Ecological monitoring of soil microbial community after forest fire, p. 144-175. In Proceedings of Symposium on Prevention of large forest fire and remediation of ecosystem. Korea Forest Research Institute, Seoul, Republic of Korea 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일