• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


An additional amylase, besides the typical $\alpha-amylase,$ was detected for the first time in the cytoplasm of B. subtilis SUH4-2, an isolate from Korean soil. The corresponding gene (bbmA) encoded a malto­genic amylase (MAase) and its sequence was almost identical to the yvdF gene of B. subtilis 168, whose function was unknown. Southern blot analysis using bbmA as the probe indicated that this gene was ubiquitous among various B. subtilis strains. In an effort to understand the physiological function of the bbmA gene in B. subtilis, the expression pattern of the gene was monitored by measuring the $\beta-galactosidase$ activity produced from the bbmA promoter fused to the amino terminus of the lacZ struc­tural gene, which was then integrated into the amyE locus on the B. subtilis 168 chromosome. The pro­moter was induced during the mid-log phase and fully expressed at the early stationary phase in defined media containing $\beta--cyclodextrin\;(\beta-CD),$ maltose, or starch. On the other hand, it was kept repressed in the presence of glucose, fructose, sucrose, or glycerol, suggesting that catabolite repression might be involved in the expression of the gene. Production of the $\beta-CD$ hydrolyzing activity was impaired by the spo0A mutation in B. subtilis 168, indicating the involvement of an additional regu­latory system exerting control on the promoter. Inactivation of yvdF resulted in a significant decrease of the $\beta-CD$ hydrolyzing activity, if not all. This result implied the presence of an additional enzyme(s) that is capable of hydrolyzing $\beta-CD$ in B. subtilis 168. Based on the results, MAase encoded by bbmA is likely to be involved in maltose and $\beta-CD$ utilization when other sugars, which are readily usable as an energy source, are not available during the stationary phase.

참고문헌 (30)

  1. Brosius, J. 1984. Plasmid vectors for the selection of promoters. Gene. 27, 151-160 
  2. Jang, S.Y., T.K. Cheong, W. Shim, J.W. Kim, and K.H. Park. 1994. Purification of Bacillus licheniformis thermostable $\alpha$-amylase by immunoaffinity chromatography, Korean Biochem. J. 27, 38-41. 
  3. Jespersen, H., M.E.A. MacGregor, B. Henrissat, M.R. Sierks, and B. Svensson. 1993. Starch- and glycogen-debranching and branching enzymes: Prediction of structural features of the catalytic ($\beta$/$\alpha$)$_8$-barrel domain and evolutionary relationship to other amylolytic enzymes. J. Prot. Chem. 12, 791-805. 
  4. Kim, T., M. Kim, B. Kim, J. Kim, T. Cheong, J. Kim, and K. Park. 1999. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus Strain. Appl. Environ. Microbiol. 65, 1644-1651 
  5. Lee, S.J., S.H. Yoo, M.J. Kim, J.W. Kim, H.M. Seok, and K.H. Park. 1995. Production and characterization of branched oligosaccharides from liquefied starch by the action of B. licheniformis amylase. Starch. 47, 127-134 
  6. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory mannual, p.142-152, Cold Spring Harbor laboratory press. Cold Spring Harbor, New York 
  7. Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74, 5463-5467 
  8. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503-517 
  9. Voskuil, M.I. and G.H. Chambliss. 1995. Significance of HPr in catabolite repression of $\alpha$-amylase. J. Bacteriol. 178, 7014-7015. 
  10. Kitahata, S., M. Taniguchi, S.D. Beltran, T. Sugimoto, and S. Okada. 1983. Purification and some properties of cyclodextrinase form Bacillus coagulans. Agric. Biol. Chem. 47, 1441-1447 
  11. Schonert, S., T. Buder, and M. K. Dahl. 1998. Identification and enzymatic characterization of the maltose-inducible $\alpha$-glucosidase MalL (Sucrase-Isomaltase-Maltase) of Bacillus subtilis. J. Bacteriol. 180, 2574-2578. 
  12. Vihinen, M. and P. Mantsala. 1989. Microbial Amylolytic Enzymes. Critical. Rev. Biochem. Mol. Biol. 24, 329-418 
  13. Shimotsu, H. and D.J. Henner. 1986. Construction of a single-copy integration vector and its use in analysis of regulation of the trp operon of Bacillus subtilis. Gene. 43, 85-94 
  14. Cha, H.J., H.G. Yoon, Y.W. Kim, H.S. Lee, J.W. Kim, K.S. Kweon, B.H. Oh, and K.H. Park. 1998. Molecular and enzymatic characterization of novel maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur. J. Biochem. 253, 251-262 
  15. Dubnau, D. and R. Davidoff-Avelson. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis, 1. Formation and properties of the donor-recipient complex. J. Mol. Biol. 56, 209-221 
  16. Lee, J., S. Zhang, S. Saha, S.S. Anna, C. Jiang, and J. Perkins. 2001. RNA expression analysis using an antisense bacillus subtilis genome array. J. Bacteriol. 183, 7371-7380 
  17. Cho, H.Y., Y.W. Kim, T.J. Kim, H.S. Lee, D.Y. Kim, J.W. Kim, Y.W. Lee, S.B. Lee, and K.H. Park. 2000. Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim. Biophys. Acta. 36120, 1-8 
  18. Park, K.H., T.J. Kim, T.K. Cheong, J.W. Kim, B.H. Oh, and B. Svensson. 2000. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the $\alpha$-amylase family. Biochim. Biophys. Acta. 1478, 165-185. 
  19. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 
  20. Kim, J.H., Z.T. Guvener, J.Y. Cho, K. Chung, and G.H. Chambliss. 1995. Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA. J. Bacteriol. 177, 5129-5134 
  21. Nicholson, W.L. and G.H. Chambliss. 1985. Isolation and characterization of a cis-acting mutation conferring catabolite repression resistance to $\alpha$-amylase synthesis in Bacillus subtilis. J. Bacteriol. 161, 875-881. 
  22. SubtiList. 1997. Data release R14.2. In I. Mozer and A. Danchin (ed.), http://genolist.pasteur.fr/SubtiList 
  23. Kuriki, T., J.H. Park, and T. Imanaka. 1988. Purification and characterization of thermostable pullulanase from Bacillus stearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis. Appl. Environ. Microbiol. 54, 2881-2883 
  24. Kamionka, A. and M.K. Dahl. 2001. Bacillus subtilis contains a cyclodextrin-binding protein which is part of a putative ABCtransporter. FEMS Microbiol. Lett. 204, 55-60 
  25. Sakai, S., M. Kubota, K. Yamamoto, T. Nakada, K. Torigde, O. Ando, and T. Sugimoto. 1987. Cloning of cyclodextrin glucanotransferase genes from B. stearothermophilus and B. macerans. J. Jpn. Soc. Starch. Sci. 34, 140-147 
  26. Ferrari, E., S. Howard, and J.A. Hoch. 1986. Effect of stage 0 sporulation mutations on subtilisin expression. J. Bacteriol. 166, 173-179 
  27. Haddaoui, E., M-F. Petit-Glatron, and R. Chambert. 1995. Characterization of a new cell-bound $\alpha$-amylase in Bacillus subtilis 168 Marburg that is only immunologically related to the exocellular $\alpha$-amylase. J. Bacteriol. 177, 5148-5150. 
  28. Park, K.H., M.J. Kim, H.S. Lee, N.S. Han, D.M. Kim, and J.F. Robyt. 1998. Transglycosylation reactions of Bacillus stearothermophillus maltogenic amylase with acarbose and various acceptors. Carbohydr. Res. 313, 235-246 
  29. Kim, I.C., J.H. Cha, J.R. Kim, S.Y. Chang, B.C. Seo, T.K. Lee, D.S. Cheong, Y.D. Choi, and K.H. Park. 1992. Catalytic properties of the cloned amylase from Bacillus licheniformis. J. Biol. Chem. 267, 22108-22114 
  30. Kim, I.C., S.H. Yoo, S.J. Lee, B.H. Oh, J.W. Kim, and K.H. Park. 1994. Synthesis of branched oligosaccharides from starch by two amylases cloned from Bacillus licheniformis. Biosci. Biotech. Biochem. 58, 516-519 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일