검색연산자 | 기능 | 검색시 예 |
---|---|---|
() | 우선순위가 가장 높은 연산자 | 예1) (나노 (기계 | machine)) |
공백 | 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 | 예1) (나노 기계) 예2) 나노 장영실 |
| | 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 | 예1) (줄기세포 | 면역) 예2) 줄기세포 | 장영실 |
! | NOT 이후에 있는 검색어가 포함된 문서는 제외 | 예1) (황금 !백금) 예2) !image |
* | 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 | 예) semi* |
"" | 따옴표 내의 구문과 완전히 일치하는 문서만 검색 | 예) "Transform and Quantization" |
The deep irrigation of rice plants brings about some beneficial effects such as reduced tiller production which results in the formation of bigger panicles, prevention of chilling injury, reduced weed growth, etc. The present study was carried out to examine the involvement of ethylene in the suppression of tiller production due to deep water irrigation in rice (cv. Dongjinbyeo). The ethylene production was induced in leaf sheath within 24 hours after the deep water irrigation and has increased even until 30 days after the treatment, recording 4.5-fold increase as compared to the shallow-irrigated rice plants. In the deep water irrigated rice plants, ethylene was accumulated to a high concentration in the air space of submerged leaf sheath as the irrigated water deterred the diffusion of ethylene out of the leaf sheath and ethylene biosynthesis was accelerated by the deep irrigation as well. The ethylene concentration recorded 35-fold increase in the deep-irrigated rice plants for 35 days. The tiller production was reduced significantly by the deep irrigation with water, the tiller bud, especially tertiary tiller bud differentiation being suppressed by the deepwater irrigation treatment, whereas the rice plants deep-irrigated with solutions containing
원문 PDF 다운로드
원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)
DOI 인용 스타일