$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Transplantation of cultured chondrocytes can regenerate cartilage tissues in cartilage defects in humans. However, this method requires a long culture period to expand chondrocytes to a large number of cells for transplantation. In addition, chondrocytes may dedifferentiate during long-term culture. These problems can potentially be overcome by the use of undifferentiated or partially developed cartilage precursor cells derived from neonatal cartilage, which, unlike chondrocytes from adult cartilage, have the capacity for rapid in vitro cell expansion and may retain their differentiated phenotype during long-term culture. The purpose of this study was to compare the cell growth rate and phenotypic modulation during in vitro culture between adult chondrocytes and neonatal chondrocytes, and to demonstrate the feasibility of regenerating cartilage tissues in vivo by transplantation of neonatal chondrocytes expanded in vitro and seeded onto polymer scaffolds. When cultured in vitro, chondrocytes isolated from neonatal (immediately postpartum, 2 h of age) rats exhibited much higher growth rate than chondrocytes isolated from adult rats. After 5 days of culture, more neonatal chondrocytes were in the differentiated state than adult chondrocytes. Cultured neonatal chondrocytes were seeded onto biodegradable polymer scaffolds and transplanted into athymic mice's subcutaneous sites. Four weeks after implantation, neonatal chondrocyte-seeded scaffolds formed white cartilaginous tissues. Histological analysis of the implants with hematoxylin and eosin showed mature and well-formed cartilage. Alcian blue/ safranin-O staining and Masson's trichrome staining indicated the presence of highly sulfated glycosarninoglycans and collagen, respectively, both of which are the major extracellular matrices of cartilage. Immunohistochemical analysis showed that the collagen was mainly type II, the major collagen type in cartilage. These results showed that neonatal chondrocytes have potential to be a cell source for cartilage tissue engineering.

저자의 다른 논문

참고문헌 (22)

  1. Meyers, M. H., W Akeson, and F. R. Convery. 1989. Resurfacing of the knee with fresh osteochondral allograft. J. Bone Joint Surg. Am. 71: 704- 713 
  2. Morihara, T., F. Harwood, R. Goerner, Y. Hirasawa, and D. Amiel. 2002. Tissue-engineered repair of osteochondral defects: Effects of the age of donor cells and host tissue. Tissue Eng. 8: 921- 929 
  3. Rotter, N., L. J. Bonassar, G. Tobias, M. Lebl, A. K. Roy, and C. A. Vacanti. 2002. Age dependence of biochemical and biomechanical properties of tissue-engineered human septal cartilage. Biomaterials 23: 3087- 3094 
  4. Brittberg, M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson. 1994. Treatment of deep cartilage defects in knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331: 889- 895 
  5. Chung, M. I., M. H. Lim, Y. J. Lee, I. H. Kim, I. Y. Kim, J. H. Kim, K. Chang, and H. Kim. 2003. Reduction of ammonia accumulation and improvement of cell viability by expression of urea cycle enzymes in Chinese hamster ovary cells. J. Microbiol. Biotechnol. 13: 217 - 224 
  6. Fuchs, J. R., S. Terada, D. Hannouche, E. R. Ochoa, J. P. Vacanti, and D. O. Fauza, 2003. Fetal tissue engineering: Chest wall reconstruction. J. Pediatr. Surg. 38: 1188- 1193 
  7. Na, K. and K. Park. 2004. Immobilization of Arg-Gly-Asp (RGD) sequence in sugar-containing copolymer for culturing fibroblast cells. J. Microbiol. Biotechnol. 14: 193- 196 
  8. Veilleux, N. H., I. V. Yannas, and M. Spector. 2004. Effect of passage number and collagen type on the proliferative, biosynthetic, and contractile activity of adult canine articular chondrocytes in type I and II collagen-glycosaminoglycan matrices in vitro. Tissue Eng. 10: 119- 127 
  9. von der Mark, K., V. Gauss, H. von der Mark, and P. Muller. 1977. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 9: 531- 532 
  10. Minas, T. and S. Nehrer. 1997. Current concepts in the treatment of articular cartilage defects. Orthopedics 20: 525- 538 
  11. Benya, P. D. and J. D. Shaffer. 1982. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30: 215- 224 
  12. Dozin, B., M. Malpeli, L. Camardella, R. Cancedda, and A. Pietrangelo. 2002. Response of young, aged and osteoarthritic human articular cnondrocytes to inflammatory cytokines: Molecular and cellular aspects. Matrix Biology 21: 449-459 
  13. Convery, F. R., W. H. Akeson, D. Amiel, M. H. Meyers, and A. Monosov, 1996. Long-term survival of chondrocytes in an osteochondral articular cartilage allograft. A case report. J. Bone Joint Surg. Am. 78: 1082- 1088 
  14. Kim, B., S. I. Jeong, S. Cho, J. Nikolovski, D. J. Mooney, S. H. Lee, O. Jeon, T. W. Kim, S. H. Lim, Y. S. Hong, C. Y. Choi, Y. M. Lee, S. H. Kim, and Y. H. Kim. 2003. Tissue engineering of smooth muscle under a mechanically dynamic condition. J. Microbiol. Biotechnol. 13: 841- 845 
  15. Dominice, J., C. Levasseur, S. Larno, X. Ronot, and M. Adolphe. 1986. Age-related changes in rabbit articular chondrocytes, Mech. Ageing Dev. 37: 231- 240 
  16. Dekel, B., T. Burakova, F. D. Arditti, S. Reich-Zeliger, O. Milstein, S. Aviel-Ronen, G. Rechavi, N. Friedman, N. Kaminski, J. H. Passwell, and Y. Reisner. 2003. Human and porcine early kidney precursors as a new source for transplantation. Nat. Med. 9: 53- 60 
  17. Ghazavi, M. T., K. P. Pritzker, A. M. Davis, and A. E. Gross. 1997. Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J. Bone Joint Surg, Br. 79: 1008- 1013 
  18. Puelacher, W. C., S. W. Kim, J. P. Vacanti, B. Schloo, D. Mooney, and C. A. Vacanti. 1994. Tissue-engineered growth of cartilage: The effect of varying the concentration of chondrocytes seeded onto synthetic polymer matrices. J. Oral Maxillofac. Surg. 23: 49- 53 
  19. Yang, B., S. Jeong, and C. Song. 2002. Hypolipidemic effect of exo- and endo-biopolymers produced from submerged mycelial culture of Ganoderma lucidum in rats. J. Microbiol. Biotechnol. 12: 872- 877 
  20. Benya, P. D., S. R Padilla, and M. E. Nimni. 1978. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 15: 1313- 1321 
  21. Buckwalter, J. A. and H. J. Mankin. 1998. Articular cartilage: Degeneration and osteoarthritis, repair, regeneration, and transplantation. lnstr. Course Lect. 47: 487- 504 
  22. Mayne, R., M. S. Vail, P. M. Mayne, and E. J. Miller. 1976. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc, Natl. Acad. Sci. USA 73: 1674- 1678 

이 논문을 인용한 문헌 (1)

  1. 2006. "" Journal of microbiology and biotechnology, 16(10): 1577~1582 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일