$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

The effect of aqueous methanol on the catalytic properties of porcine pancreatic lipase has been investigated. The k$_{CAT}$, values for the hydrolysis of N$^{alpha}$-benzyloxycarbonyl-L­lysine p-nitrophenyl ester at 0$^{circ}$C increased in a linear manner with increasing methanol concentration. However, the K$_{M}$ values were not influenced at methanol concentrations lower than $30\%$ and then began to increase at higher concentrations in an exponential fashion. Based on product analysis, the increase in k$_{CAT}$, with increasing methanol concentration can be accounted for by nucleophilic competition of methanol for the acyl enzyme intermediate, indicating that the rate-limiting step of the porcine pancreatic lipase-catalyzed reaction is deacylation under current experimental conditions. The exponential increase in K$_{M}$ at methanol concentrations higher than $30\%$ is attributed to the hydrophobic partitioning effect on substrate binding. There was no loss of lipase activity over a 4 h period in $60\%$ methanol concentration at pH$^{circ}$ 5.5 and 0$^{circ}$C. By monitoring the intrinsic fluorescence and absorbance, no evidence for structural changes by methanol was observed.

참고문헌 (22)

  1. Burdette, R. A. and D. M. Quinn. 1986. Interfacial reaction dynamics and acylenzyme mechanism for lipoprotein lipasecatalyzed hydrolysis of lipid p-nitrophenyl ester. J. Biol. Chem. 261: 12016- 12021 
  2. Kazlauskas, R. J. 1994. Elucidating structure-mechanism relationships in lipases: Prospects for predicting and engineering catalytic properties. Trends Biotechnol. 12: 464- 472 
  3. Park, H. and Y. M. Chi. 2001. The enhancement of electro stricti on caused by lowering the solvent dielectric constant leads to the decrease of activation energy in trypsin catalysis. Biochim. Biophys. Acta 1568: 53- 59 
  4. Peters, G. H., S. Toxvaerd, O. H. Olsen, and A. Svendsen. 1997. Computational studies of the activation of lipase and the effect of a hydrophobic environment. Protein Eng. 10: 137- 147 
  5. Petersen, M. T. N., P. Fojan, and S. B. Petersen. 2001. How do lipases and esterases work: The electrostatic contribution. J. Biotechnol. 85: 115- 147 
  6. Brady, L., A. M. Brzozowski, Z. S. Derewenda, E. Dodson, G. Dodson, S. Tolley, J. P. Turkenburg, L. Christiansen, B. Huge-Jensen, L. Norskov, L. Thim, and U. Menge. 1990. A serine protease triad forms the catalytic centre of a tryacylglycerollipase. Nature 343: 767- 770 
  7. Cartwright, S. J. and S. G. Waley. 1987. Cryoenzymology of $\beta$ lactamases. Biochemistry 26: 5329- 5337 
  8. Stevanato, R., B. Mondovi, O. Befani, M. Scarpa, and A. Rigo. 1994. Electrostatic control of oxidative deamination catalyzed by bovine serum amine oxidase. Biochem. J. 299: 317- 320 
  9. Compton, P. D., R. J. Coll, and A. L. Fink. 1986. Effect of methanol cryosolvents on the structural and catalytic properties of bovine trypsin. J. Biol. Chem. 261: 1248-1252 
  10. Affleck, R., C. A Haynes, and D. S. Clark. 1992. Solvent dielectric effects on protein dynamics. Proc. Natl. Acad. Sci. USA 89: 5167-5170 
  11. Fink, A L. 1974. The trypsin-catalyzed hydrolysis of $N^{\alpha}-benzyloxycarbonyl-L-lysine-p-nitrophenyl$ ester in dimethylsulfoxide at subzero temperature. J. Biol. Chem. 249: 5027- 5032 
  12. Lemke, K., M. Lemke, and F. Theil. 1997. A threedimensional predictive active site model for lipase from Pseudomonas cepacia. J. Org. Chem. 63: 6268- 6273 
  13. Zandonella, G., P. Stadler, L. Haalck, F. Spener, F. Paltauf, and A. Hermetter. 1999. Interactions of fluorescent triacylglycerol analogs covalently bound to the active site of a lipase from Rhizopus oryzae. Eur. J. Biochem. 262: 63- 69 
  14. Svendsen, A. 2000. Lipase protein engineering. Biochim. Biophys. Acta 1543: 223- 238 
  15. Villeneuve, P., J. M. Muderhwa, J. Graille, and M. J. Haas. 2000. Customizing lipases for biocatalysis: A survey of chemical, physical and molecular biological approaches. J. Mol. Catal. B: Enzymatic 9: 113- 148 
  16. Hilton, S. and J. T. Buckley. 1991. Studies on the reaction mechanism of a Microbiol Iipase/acyltransferase using chemical modification and site-directed mutagenesis. J. Biol. Chem. 266: 997- 1000 
  17. Paiva, A. L., V. M. Balcao, and F. X. Malcata, 2000. Kinetics and mechanisms of reactions catalyzed by immobilized lipases, Enzyme Microb. Technol. 27: 187- 204 
  18. Stryer, L. 1995. Biochemistry, 4th Ed. pp. 207-210. W. H. Freeman & Company, NY, U.S.A 
  19. Moreau, H., A. Moulin, Y. Gargouri, J. Noel. and R. Verger. 1991. Inactivation of gastric and pancreatic lipases by diethyl p-nitrophenyl phosphate. Biochemistry 30: 1037-1041 
  20. Peters, G. H., D. M. F. van Aalten, O. Edholm, S. Toxvaerd, and R. Bywater. 1996. Dynamics of proteins in different solvent systems: Analysis of essential motion in lipases. Biophys. J. 71: 2245- 2255 
  21. Reyes, H. R. and C. G. Hill. 1993. Kinetic modeling of interesterification reactions catalyzed by immobilized lipase. Biotechnol. Bioengin. 43: 171- 18 
  22. Warshel, A., G. Naray-Szabo, F. Sussman, and J. K. Hwang. 1989. How do serine proteases work? Biochemistry 28: 3629- 3637 

이 논문을 인용한 문헌 (2)

  1. 2007. "" Journal of microbiology and biotechnology, 17(4): 650~654 
  2. 2007. "" Journal of microbiology and biotechnology, 17(6): 1054~1057 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일