$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

On the basis of high osmotic tolerance and xylitol production, a novel yeast strain was screened from soils of rice farming. The isolated strain HY200 was systematically characterized by using general approaches of Biolog Microlog$^{TM}$ and 18S rRNA sequence analyses, and consequently was designated as Candida tropicalis HY200. Under formulated culture conditions, relatively high xylitol yield ($77\%$) and productivity (2.57 g/l$\codt$h) were obtained, in practice, when 200 g/l of xylose was supplemented. In the utilization of nitrogen, inorganic compounds could not serve as nitrogen sources. As a promising phenotype, HY200 steadily flocculated during and/or after growing in the formulated medium. The extent of flocculation was partly affected by nitrogen sources. However, regardless of the kinds of carbon source fed, the flocculent cells were always observed at the end of the exponential growth phase. These observations strongly suggest that the strain HY200 could effectively be used as a potential candidate for the production of xylitol from xylose, especially in repeated batch mode, because of its flocculation ability and tolerance to high substrate concentrations.

참고문헌 (32)

  1. Barbosa, M. F. S., M. B. de Medeiros, I. M. de Mancilha, H. Schneider, and H. Lee. 1988. Screening of yeasts for production of xylitol from D-xylose and some factors which affect xylitol yield in Candida guilliermondii. J. Ind. Microbiol. 3: 241-251 
  2. Dominguez, J. M., C. S. Gong, and G. T. Tsao. 1997. Production of xylitol from D-xylose by Debayomyces hansenii. Appl. Biochem. Biotechnol. 63: 117- 127 
  3. Emodi, A. 1978. Xylitol: Its properties and food applications. Food Techol. 32: 20- 32 
  4. Furlan, S. A., P. Bouilloud, and H. F. Castro. 1994. Influence of oxygen on ethanol and xylitol production by xylose fermenting yeasts. Process Biochem. 29: 657- 662 
  5. Furlan, S. A., P. Bouilloud, P. Strehaiano, and J. P. Riba. 1991. Study of xylitol formation under oxygen limited conditions. Biotechnol. Lett. 13: 203- 206 
  6. Horitsu, H., Y. Yahashi, K. Takamizawa, K. Kawai, T. Suzuki, and N. Watanabe. 1992. Production of xylitol from D-xylose by Candida tropicalis: Optimization of production rate. Biotechnol. Bioeng. 40: 1085-1091 
  7. Lee, W. J., M. D. Kim, M. S. Yoo, Y. W. Ryu, and J. H. Seo. 2003. Effects of xylose reductase activity on xylitol production in two-substrate fermentation of recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 13: 725- 730 
  8. Ligthelm, M. E., B. A. Prior, J. C du Preez, and V. Brandt. 1988. An investigation of $D-(1-^{13}C)$ xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl. Microhiol. Biotechnol. 28: 293- 296 
  9. Roseiro, J. C., M. A. Peito, F. M. Girio, and M. AmaralCallaco. 1991. The effects of oxygen transfer coefficient and substrate concentration on xylose fermentation by Debarvomyces hansenii. Arch. Microbiol. 156: 484- 490 
  10. Roca, E., N. Meinander, and B. Hahn-Hagerdal, 1996. Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bead reactor. Biotechnol. Bioeng. 51: 317-326 
  11. Lee, J. H., Y. B. Lim, J. H. Koh, S. Y. Baig, and H. T. Shin. 2002. Screening of thermotolerant yeast for use as Microbiol feed additive. J. Microbiol. Biotechnol. 12: 162-165 
  12. Maekinen, K. K. 1979. Xylitol and oral health. Adv. Food Res. 25: 137- 158 
  13. Washuttle, J., P. Riederer, and E. Banchen. 1973. A qualitative and quantitative study of sugar-alcohols in several foods. J. Food Sci. 38: 1262 
  14. Ylikahri, R. 1979. Metabolic and nutritional aspects of xylitol. Adv. Food Res. 25: 159- 180 
  15. Du Preez, J. C., M. Bosch, and B. A. Prior. 1986. Xylose fermentation by Candida shehatae and Pichia stipitis: Effects of pH, temperature and substrate concentration. Enzyme Microb. Technol. 8: 360- 364 
  16. Ligthelm, M. E., B. A. Prior, and J. C. du Preez. 1988. The oxygen requirements of yeasts for the fermentation of D-xylose and D-gucose to ethanol. Appl. Microbiol. Biotechnol. 28: 63- 68 
  17. Walther. T., P. Hensirisak, and F. A. Agblevor. 2001. The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Biores. Technol. 76: 213-220 
  18. Gong, C. S., L. F. Chen, and G. T. Taso. 1981. Quantitative production of xylitol from D-xylose by high xylitol producing yeast mutant Candida tropicalis HXP2. Biotech. Lett. 3: 130-135 
  19. Sirisansanneeyakul, S., M. Staniszewski, and M. Rizzi. 1995. Screening of yeasts for production of xylitol from D-xylose. J. Ferment. Bioeng. 80: 565- 570 
  20. Vandeska, E., S. Amartey, S. Kuzmanova, and T. W. Jeffries. 1995. Effects of environmental conditions on production of xylitol by Candida boidinii. World J. Microbiol. Biotechnol. 11: 213- 218 
  21. Yahashi, Y., M. Hatsu, H. Horitsu, K. Kawai, T. Suzuki, and K. Takamizawa. 1996. D-Glucose feeding for improvement of xylitol productivity from D-xylose using Candida tropicalis immobilized on a non-woven fabric. Biotechnol. Lett. 18: 1395- 1400 
  22. Kim, S. Y., J. H. Kim, and D. K. Oh. 1997. Improvement of xylitol production by controlling oxygen supply in Candida parapsilosis. J. Ferment. Bioeng. 83: 267- 270 
  23. Kitpreechsvanich, V., M. Hayashi, N. Nishio, and S. Nagai. 1984. Conversion of D-xylose into xylitol by xylose reductase from Candida pelliculosa coupled with oxidoreductase system of methanogen strain HU. Biotechnol. Lett. 6: 651- 656 
  24. Lu, Jean, L. B. Tsai, C. S. Gong, and G. T. Tsao. 1995. Effect of nitrogen sources on xylitol production from D-xylose by Candida sp. L-102. Biotechnol. Lett. 17: 167-170 
  25. Nolleau, V., L. Preziosi-Belloy, J. P. Delgenes, and J. M. Navarro. 1993. Xylitol production from xylose by two yeast strains: Sugar tolerance. Curr. Microbiol. 27: 191- 197 
  26. Jeffries, T. W. 1981. Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis. Biotechnol. Bioeng. 24: 371- 384 
  27. Hyvoenen, L., P. Koivistoinen, and F. Voirol. 1983. Food technological evaluation of xylitol. Adv. Food Res. 28: 373-403 
  28. Ikeuchi, T., M. Azuma, J. Kato, and H. Ooshirna. 1999. Screening of microorganisms for xylitol production and fermentation behavior in high concentrations of xylose. Biomass Bioenerg. 16: 333- 339 
  29. Jang, S. H., H. Y. Kang, G. J. Kim, J. H. Seo, and Y. W. Ryu. 2003. Complete in vitro conversion of D-xylose to xylitol by coupling xylose reductase and formate dehydrogenase. J. Microbiol. Biotechnol. 13: 501- 508 
  30. Kim, M. S., Y. S. Chung, J. H. Seo, D. H. Jo, Y. H. Park, and Y. W. Ryu. 2001. High-yield production of xylitol from xylose by a xylitol dehydrogenase defective mutant of Pichia stipitis. J. Microbiol, Biotechnol. 11: 564- 569 
  31. Oh, D. K. and S. Y. Kim. 1998. Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl. Microbiol. Biotechnol. 50: 419- 425 
  32. Vongsuvalert, V. and Y. Tani. 1989. Xylitol production by a methanol yeast Candida boidinii (Kloekera sp.) No. 2201. J. Ferment. Bioeng. 67: 35- 39 

이 논문을 인용한 문헌 (3)

  1. 2006. "" Journal of microbiology and biotechnology, 16(12): 1874~1881 
  2. 2006. "" Journal of microbiology and biotechnology, 16(12): 1904~1911 
  3. 2007. "" Journal of microbiology and biotechnology, 17(2): 297~304 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일