$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Alcaligenes sp. JMP228 carrying 2,4­dichlorophenoxyacetic acid (2,4-D) degradative plasmid pJP4 was inoculated into natural soil, and transfer of the plasmid pJP4 to indigenous soil bacteria was investigated with and without 2,4-D amendment. Plasmid pJP4 transfer was enhanced in the soils treated with 2,4-D, compared to the soils not amended with 2,4-D. Several different transconjugants were isolated from the soils treated with 2,4-D, while no indigenous transconjugants were obtained from the unamended soils. Inoculation of the soils with both the donor Alcaligenes sp. JMP228/pJP4 and a recipient Burkholderia cepacia DBO 1 produced less diverse transconjugants than the soils inoculated with the donor alone. Repetitive extragenic palindromic-polymerase chain reaction (REP-PCR) analysis of the transconjugants exhibited seven distinct genomic DNA fingerprints. Analysis of 16S rDNA sequences indicated that the transconjugants were related to members of the genera Burkholderia and Pandoraea. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that inoculation of the donor caused clear changes in the bacterial community structure of the 2,4-D­amended soils. The new 16S rRNA gene bands in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D­degrading transconjugants isolated from the soil. The results indicate that introduction of the 2,4-D degradative plasmid as Alcaligenes sp. JMP228/pJP4 has a substantial impact on the bacterial community structure in the 2,4-D-amended soil.

참고문헌 (32)

  1. Cho. M. J., Y. K. Kim, and J. O. Ka. 2004. Molecular differentiation of Bacillus spp. antagonistic against phytopathogenic fungi causing damping-off disease. J. Microbiol. Biotechnol. 14(3): 599- 606 
  2. Foster, R. K. and R. B. Mckercher. 1973. Laboratory incubation studies of chlorophenoxyacetic acids in Chemozemic soils. Soil Biol. Biochem. 5: 333- 337 
  3. Fournier, J. C. 1980. Enumeration of the soil microorganisms able to degrade 2,4-D by metabolism or co-metabolism. Chemosphere 9: 169- 174 
  4. Hong, S. M., Y. W. Lee, C. K. Kim, and J. O. Ka. 1996. Fate of genetically engineered 2,4-D-degrading microorganisms in natural soils and waters. J. Microbiol. 34(4): 320- 326 
  5. Ka, J. O., W. E. Holben, and J. M. Tiedje. 1994. Use of gene probes to aid in recovery and identification of functionally dominant 2,4-dichlorophenoxyacetic acid-degrading populations in soil. Appl. Environ. Microbiol. 60: 1116- 1120 
  6. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-148. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, England 
  7. Newby, D. T., T. J. Gentry, and I. L. Pepper. 2000. Comparison of 2,4-dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugrnentation with two different pJP4 donors. Appl. Environ. Microbiol. 66: 3399- 3407 
  8. Weaver, R. W., J. S. Angle, and P. S. Bottomley. 1999. Methods of Soil Analysis: Part 2 - Microbiological and Biochemical Properties. Soil Science Society of America, Madison, U.S.A 
  9. Top, E. M., P. Van Daele, N. De Saeyer, and L. J. Forney. 1998. Enhancement of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil by dissemination of catabolic plasmids. Antonie Leeuwenhoek 73: 87- 94 
  10. Kado, C. I. and S. T. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365- 1373 
  11. Kunc, F. and J. Rybarova, 1893. Mineralization of carbon atoms of 14C-2,4-D side chain and degradation ability of bacteria in soil. Soil Biol. Biochem. 15: 141- 144 
  12. Balkwill, D. L. 1990. Deep-aquifer microorganisms, pp. 183- 211. In D. P. Labeda (ed.) Isolation of Biotechnological Organisms from Nature. McGraw-Hill Publ. Co., New York, U.S.A 
  13. Kim, Y. T., B. K. Park. E. I. Hwang, N. H. Yim, N. R. Kim, T. H. Kang, S. H. Lee, and S. U. Kim. 2004. Investigation of possible gene transfer to soil microorganisms for environmental risk assessment of genetically modified organisms. J. Microbiol. Biotechnol. 14(3): 498- 502 
  14. Norris, T. B., J. M. Wraith, R. W. Castenholz, and T. R. McDermott. 2002. Soil Microbiol community structure across a thermal gradient following a geothermal heating event. Appl. Environ. Microbiol. 68: 6300- 6309 
  15. Loos, M. A., I. F. Schlosser, and W. R. Mapham. 1979. Phenoxy herbicide degradation in soils: Quantitative studies of 2,4-D- and MCPA-degrading Microbiol populations. Soil Biol. Biochem. 11: 377- 385 
  16. Park. I. H. and J. O. Ka. 2003. Isolation and characterization of 4-(2,4-dichlorophenoxy )butyric acid-degrading bacteria from agricultural soils. J. Microbiol. Biotechnol. 13: 243- 250 
  17. Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr, P. R. Saxman, J. M. Stredwick, G. M. Garrity, B. Li, G. J. Olsen, S. Pramanik, T M. Schmidt, and J. M. Tiedje. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28(1): 173- 174 
  18. Ou, L. T. 1984. 2,4-D degradation and 2,4-D degrading microorganisms in soils. Soil Sci. 137: 100- 107 
  19. Ravel, J., E. M. H. Wellington, and R. T. Hill. 2000. Interspecific transfer of streptomyces giant plasmids in sterile amended soil microcosms. Appl. Environ. Microbiol. 66: 529- 534 
  20. Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring Microbiol mat community. Appl. Environ. Microbiol. 62: 340- 346 
  21. Daane, L. L., J. A. E. Molina, and M. J. Sadowsky. 1997. Plasmid transfer between spatially separated donor and recipient bacteria in earthworm-containing soil microcosms. Appl. Environ. Microbiol. 63: 679- 686 
  22. Yu, Z., V J. J. Martin, and W W. Mohn. 1999. Occurrence of two resin acid-degrading bacteria and a gene encoding resin acid biodegradation in pulp and paper mill effluent biotreatment systems assayed by PCR. Microb. Ecol. 38: 114- 125 
  23. Newby, D. T., K. L. Josephson, and I. L. Pepper. 2000. Detection and characterization of plasmid pJP4 transfer to indigenous soil bacteria. Appl. Environ. Microbiol. 66: 290- 296 
  24. Don, R. H. and J. M. Pemberton. 1981. Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J. Bacteriol. 145: 681- 686 
  25. Ka, J. O. and J. M. Tiedje. 1994. Integration and excision of a 2,4-diehlorophenoxyacetie aeid-degradative plasmid in Alcaligenes paradux and evidence of its natural intergeneric transfer. J. Bacteriol. 176: 5284- 5289 
  26. Bae, J. W., J. J. Kim, C. O. Jeon, K. Kim, J. J. Song, S. G. Lee, H. R. Poo, C. M. Jung, Y. H. Park. and M. H. Sung. 2003. Application of denaturing gradient gel electrophoresis to estimate the diversity of commensal thermophiles. J. Microbiol. Biotechnol. 13(6): 1008- 1012 
  27. Neilson, J. W., K. L. Josephson, I. L. Pepper, R. G. Arnold, G. D. DiGiovanni, and N. A. Sinclair. 1994. Frequency of horizontal gene transfer of a large catabolic plasmid (pJP4) in soil. Appl. Environ. Microbiol. 60: 4053- 4058 
  28. de Bruijn, F. J. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 58: 2180- 2187 
  29. Ou, L. T., J. M. Davidson, and D. F. Rothwell. 1978. Response of soil microflora to high 2,4-D applications. Soil Biol. Biochem. 10: 443- 445 
  30. Versalovic, J., M. Schneider, F. J. de Bruijn, and J. R. Lupski. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 5: 25- 40 
  31. Biederbeck, V. O., C. A. Campbell, and A. E. Smith. 1987. Effects of long-term 2,4-D field applications on soil biochemical processes. J. Environ. Qual. 16: 257- 262 
  32. Don, R. H. and J. M. Pemberton. 1985. Genetic and physical map of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pJP4. J. Bacteriol. 161: 466- 468 

이 논문을 인용한 문헌 (9)

  1. 2006. "" Journal of microbiology and biotechnology, 16(10): 1561~1569 
  2. 2006. "" Journal of microbiology and biotechnology, 16(1): 118~125 
  3. 2006. "" Journal of microbiology and biotechnology, 16(5): 704~715 
  4. 2007. "" Journal of microbiology and biotechnology, 17(11): 1890~1893 
  5. 2007. "" Journal of microbiology and biotechnology, 17(2): 253~261 
  6. 2008. "" Journal of microbiology and biotechnology, 18(2): 207~218 
  7. 2009. "" Journal of microbiology and biotechnology, 19(2): 113~120 
  8. 2009. "" Journal of microbiology and biotechnology, 19(12): 1679~1687 
  9. 2011. "" Journal of microbiology and biotechnology, 21(2): 115~123 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일