$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

In this paper, a target tracking algorithm for tracking maneuvering vehicles is presented. The overall algorithm belongs to the category of an interacting multiple-model (IMM) algorithm used to detect multiple targets using fused information from multiple sensors. First, two kinematic models are derived: a constant velocity model for linear motions, and a constant-speed turn model for curvilinear motions. Fpr the constant-speed turn model, a nonlinear information filter is used in place of the extended Kalman filter. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. The model-matched filter used in multi-sensor environments takes the form of a federated nonlinear information filter. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. In this paper, the structural features and information sharing principle of the federated information filter are discussed. The performance of the suggested algorithm using a Monte Carlo simulation under the two patterns is evaluated.

참고문헌 (18)

  1. J. P. Helferty, 'Improved tracking of maneuvering targets: The use of turn-rate distributions for acceleration modeling,' IEEE Trans. on Aerospace and Electronic Systems, vol. 32, no. 4, pp. 1355-1361, 1996 
  2. S. J. Lee, J. H. Hong, and K. S. Yi, 'A modeling and control of intelligent cruise control systems,' Trans. of the KSME, A, vol. 25, no. 2, pp. 283-288, 2001 
  3. I. K. Moon and K. S. Yi, 'Vehicle tests of a longitudinal control law for application to stopand- go cruise control,' KSME International Journal, vol. 16, no. 9, pp. 1166-1174, 2002 
  4. X. Li and Y. Bar-Shalom, 'Design of an interacting multiple model algorithm for air traffic control tracking,' IEEE Trans. on Control Systems Technology, vol. 1, no. 3, pp. 186-194, 1993 
  5. Y. Bar-Shalom, X. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation, John Wiley & Sons, INC, New York, 2001 
  6. F. Dufour and M. Mariton, 'Passive sensor data fusion and maneuvering target tracking,' in: Bar-Shalom, Y. (Ed.), Multitarget-Multisensor Tracking: Applications and Advances, Artech House, Norwood, MA, Chapter 3, pp. 65-92, 1992 
  7. B. J. Lee, Y. H. Joo, and J. B. Park, 'An Intelligent tracking method for a maneuvering target,' International Journal of Control, Automation, and Systems, vol. 1, no. 1, pp. 93-100, March 2003 
  8. A. G. O. Mutambara, Decentralized Estimation and Control for Multisensor Systems, CRC Press, Boca Raton, 1998 
  9. Y. Zhu, Z. You, J. Zhao, K. Zhang, and X. Li, 'The optimality for the distributed Kalman filtering fusion,' Automatica, vol. 37, no. 9, pp. 1489-1493, 2001 
  10. N. A. Carlson and M. P. Berarducci, 'Federated Kalman filter simulation results,' Journal of the Institute of Navigation, vol. 41, no. 3, pp. 297-321, 1994 
  11. K. C. Chang, T. Zhi, and R. K. Saha, 'Performance evaluation of track fusion with information matrix filter,' IEEE Trans. on Aerospace and Electronic Systems, vol. 38, no. 2, pp. 455-466, 2002 
  12. Y. S. Kim and K. S. Hong, 'An IMM algorithm for tracking maneuvering vehicles in an adaptive cruise control environment,' International Journal of Control, Automation, and Systems, vol. 2, no. 3, pp. 310-318, September 2004 
  13. V. P. Jilkov, D. S. Angelova, and TZ. A. Semerdjiev, 'Design and comparison of modeset adaptive IMM algorithms for maneuvering target tracking,' IEEE Trans. on Aerospace and Electronic Systems, vol. 35, no. 1, pp. 343-350, 1999 
  14. D. S. Caveney, Multiple Target Tracking in the Adaptive Cruise Control Environment Using Multiple Models and Probabilistic Data Association, M. S. Thesis, University of California, Berkeley, U. S. A., 1999 
  15. T. G. Lee, 'Centralized Kalman filter with adaptive measurement fusion: its application to a GPS/SDINS integration system with an additional sensor,' International Journal of Control, Automation, and Systems, vol. 1, no. 4, pp. 444-452, December 2003 
  16. C. Y. Chong, S. Mori, and K. C. Chang, 'Distributed multitarget multisensor tracking,' in Bar-Shalom, Y. (Ed.), Multitarget-Multisensor Tracking: Advanced Applications, Artech House, Norwood, MA, 1990 
  17. E. Semerdjiev and L. Mihaylova, 'Variable- and fixed-structure augmented interacting multiplemodel algorithms for maneuvering ship tracking based on new ship models,' International Journal of Applied Mathematics and Computer Science, vol. 10, no. 3, pp. 591-604, 2000 
  18. N. A. Carson, 'Federated square root filter for decentralized parallel processes,' IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 517-525, 1990 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일