• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the premise part of the rule-based structure of the gHFNN. The consequence part of the gHFNN is designed using PNNs. We distinguish between two types of the linear fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the consequence part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, the models are experimented with a representative numerical example. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when comparing with other neurofuzzy models.

참고문헌 (28)

  1. S.-K. Oh and W. Pedrycz, 'Fuzzy identification by means of auto-tuning algorithm and its application to nonlinear systems,' Fuzzy Sets and Systems, vol. 115, no. 2, pp. 205-230, 2000 
  2. B.-J. Park, W. Pedrycz, and S.-K. Oh, 'Identification of fuzzy models with the aid of evolutionary data granulation,' IEE Proceedings -Control Theory and Application, vol. 148, no. 5, pp. 406-418, 2001 
  3. S.-K. Oh, W. Pedrycz, and B.-J. Park, 'Hybrid identification of fuzzy rule-based models,' International Journal of Intelligent Systems, vol. 17, no. 1, pp. 77-103, 2002 
  4. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer- Verlag, Berlin Heidelberg, 1996 
  5. S.-K. Oh and W. Pedrycz, 'The design of selforganizing polynomial neural networks,' Information Sciences, vol. 141, no. 3-4, pp. 237- 258, 2002 
  6. T. Ohtani, H. Ichihashi, T. Miyoshi, and K. Nagasaka, 'Orthogonal and successive projection methods for the learning of neurofuzzy GMDH,' Information Sciences, vol. 110, pp. 5-24, 1998 
  7. G. E. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting, and Control, 2nd edition Holden-Day, SanFransisco, 1976 
  8. E. Kim, H. Lee, M. Park, and M. Park, 'A simply identified Sugeno-type fuzzy model via double clustering,' Information Sciences, vol. 110, pp. 25-39. 1998 
  9. Y. Lin and G. A. Cunningham III, 'A new approach to fuzzy-neural modeling,' IEEE Trans. on Fuzzy Systems, vol. 3, no. 2, pp. 190-197, 1997 
  10. S.-K. Oh, W. Pedrycz, and B.-J. Park, 'Polynomial neural networks architecture: analysis and design,' Computers and Electrical Engineering, vol. 29, no. 6, pp. 653-725, 2003 
  11. S.-K. Oh, W. Pedrycz, and H.-S. Park, 'Hybrid identification in fuzzy-neural networks,' Fuzzy Sets and Systems, vol. 138, no. 2, pp. 399-426, 2003 
  12. H.-S. Park and S.-K Oh, 'Multi-FNN identification by means of HCM clustering and its optimization using genetic algorithms,' Journal of Fuzzy Logic and Intelligent Systems(in Korean), vol. 10, no. 5, pp. 487-496, 2000 
  13. L. Magdalena, O. Cordon, F. Gomide, F. Herrera, and F. Hoffmann, 'Ten years of genetic fuzzy systems: current framework and new trends,' Fuzzy Sets and Systems, vol. 141, no. 1, pp. 5-31, 2004 
  14. J. H. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbour, 1975 
  15. S.-K. Oh, Computational Intelligence by Programming focused on Fuzzy, Neural Networks, and Genetic Algorithms (in Korean), Naeha, 2002 
  16. T. Ohtani, H. Ichihashi, T. Miyoshi, and K. Nagasaka, 'Structural learning with M-apoptosis in neurofuzzy GMHD,' Proc. of the 7th IEEE Iinternational Conference on Fuzzy Systems, pp. 1265-1270, 1998 
  17. S.-K. Oh, K.-C. Yoon, and H.-K. Kim, 'The design of optimal fuzzy-neural networks structure by means of GA and an aggregate weighted performance index,' Journal of Control, Automation and Systems Engineering(in Korean), vol. 6, no. 3, pp. 273-283, 2000 
  18. A. G. Ivahnenko, 'The group method of data handling: a rival of method of stochastic approximation,' Soviet Automatic Control, vol. 13, no. 3, pp. 43-55, 1968 
  19. T. Yamakawa, 'A new effective learning algorithm for a neo fuzzy neuron model,' Proc. of 5th IFSA World Conference, pp. 1017-1020, 1993 
  20. H. Ichihashi and K. Nagasaka, 'Differential minimum bias criterion for neuro-fuzzy GMDH,' Proc. of 3rd International Conference on Fuzzy Logic, Neural Nets and Soft Computing IIZUKA'94, pp. 171-172, 1994 
  21. B.-J. Park and S.-K. Oh, 'The analysis and design of advanced neurofuzzy polynomial networks,' Journal of the Institute of Electronics Engineers of Korea (in Korean), vol. 39-CI, no. 3, pp. 18-31, 2002 
  22. S.-K. Oh, C.-S. Park, and B.-J. Park, 'On-line modeling of nonlinear process systems using the adaptive fuzzy-neural networks,' The Transactions of the Korean Institute of Electrical Engineers (in Korean), vol. 48A, no. 10, pp. 1293-1302, 1999 
  23. B.-J. Park, S.-K. Oh, T.-C. Ahn, and H.-K. Kim, 'Optimization of fuzzy systems by means of GA and weighting factor,' The Transactions of the Korean Institute of Electrical Engineers (in Korean), vol. 48A, no. 6, pp. 789-799, June 1999 
  24. D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning, Addison- Wesley, 1989 
  25. B.-J. Park, S.-K. Oh, and S.-W. Jang, 'The design of adaptive fuzzy polynomial neural networks architectures based on fuzzy neural networks and self-organizing networks,' Journal of Control, Automation and Systems Engineering(in Korean), vol. 8, no. 2, pp.126-135, 2002 
  26. W. Pedrycz and J. F. Peters, Computational Intelligence and Software Engineering, World Scientific, Singapore, 1998 
  27. S.-K. Oh, W. Pedrycz, and B.-J. Park, 'Selforganizing neurofuzzy networks based on evolutionary fuzzy granulation,' IEEE Trans. on Systems, Man and Cybernetics-A, vol. 33, no. 2, pp. 271-277, 2003 
  28. K. S. Narendra and K. Parthasarathy, 'Gradient methods for the optimization of dynamical systems containing neural networks,' IEEE Trans. on Neural Networks, vol. 2, no. 2, pp. 252-262, March 1991 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일