$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

In electrical impedance tomography (EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically, the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a simulated annealing technique as a statistical reconstruction algorithm for the solution of the static EIT inverse problem. Computer simulations with 32 channels synthetic data show that the spatial resolution of reconstructed images by the proposed scheme is improved as compared to that of the mNR algorithm at the expense of increased computational burden.

참고문헌 (15)

  1. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, 'Optimization by simulated annealing,' Science, vol. 220, pp. 671-680, 1983 
  2. C. Cohen-Bacrie, Y. Goussard, and R. Guardo, 'Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint,' IEEE Trans. on Medical Imaging, vol. 16, no. 5, pp. 170-179, 1997 
  3. M. C. Kim, S. Kim, K. Y. Kim, J. H. Lee, and Y. J. Lee, 'Reconstruction of particle concentration distribution in annular Couette flow using electrical impedance tomography,' Journal of Industrial and Engineering Chemistry, vol. 7, no. 5, pp. 341-347, 2001 
  4. S. Gemen and D. Geman, 'Stochastic relaxation, Gibbs distribution and the Bayesian restoration in images,' IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 6, no. 3, pp. 721-741, 1984 
  5. C. J. Grootveld, A. Segal, and B. Scarlett, 'Regularized modified Newton-Raphson technique applied to electrical impedance tomography,' International Journal of Imaging System Technology, vol. 9, pp. 60-65, 1998 
  6. J. G. Webster, Electrical Impedance Tomography, Adam Hilger, 1990 
  7. M. Vauhkonen, D. Vadasz, P. A. Karjalainen, and J. P. Kaipio, 'Subspace regularization method for electrical impedance tomography,' Proc. of 1st International Conference on Bioelectromagnetism, Tampere, Finland, pp. 9-13, 1996 
  8. M. Vauhkonen, Electrical Impedance Tomography and Priori Information, Kuopio University Publications Co., Natural and Environmental Sciences 62, 1997 
  9. M. Glidewell and K. T. Ng, 'Anatomically constrained electrical impedance tomography for anisotropic bodies via a two-step approach,' IEEE Trans. on Medical Imaging, vol. 14, no. 3, pp. 498-503, 1995 
  10. T. J. Yorkey, J. G. Webster, and W. J. Tompkins, 'Comparing reconstruction algorithms for electrical impedance tomography,' IEEE Trans. on Biomedical Engineering, vol. 34, no. 11, pp. 843-852, 1987 
  11. L. Ingber, 'Simulated annealing: Practice and theory,' Journal of Mathematical Computation Modelling, vol. 18, no. 11, pp. 29-57, 1993 
  12. K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, and J. M. Sullivan, 'A dual mesh scheme for finite element based reconstruction algorithm,' IEEE Trans. on Medical Imaging, vol. 14, no. 3, pp. 504-514, 1995 
  13. A. Adler and R. Guardo, 'Electrical impedance tomography: regularized imaging and contrast detection,' IEEE Trans. on Medical Imaging, vol. 15, no. 2, pp. 170-179, 1996 
  14. J. C. Newell, D. G. Gisser, and D. Isaacson, 'An electric current tomograph,' IEEE Trans. on Biomedical Engineering, vol. 35, no. 10, pp. 828-833, 1987 
  15. T. Murai and Y. Kagawa, 'Electrical impedance computed tomography based on a finite element model,' IEEE Trans. on Biomedical Engineering, vol. 32, no. 3, pp. 177-184, 1985 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일