$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Isolation and Characterization of Bacteria Associated with Two Sand Dune Plant Species, Calystegia soldanella and Elymus mollis 원문보기

The journal of microbiology, v.43 no.3, 2005년, pp.219 - 227  

Park Myung Soo (Korea Research Institute of Bioscience and Biotechnology) ,  Jung Se Ra (Korea Research Institute of Bioscience and Biotechnology) ,  Lee Myoung Sook (Korea Research Institute of Bioscience and Biotechnology) ,  Kim Kyoung Ok (Korea Research Institute of Bioscience and Biotechnology) ,  Do Jin Ok (Korea Research Institute of Bioscience and Biotechnology) ,  Lee Kang Hyun (Korea Research Institute of Bioscience and Biotechnology) ,  Kim Seung Bum (Department of Microbiology, School of Bioscience and Biotechnology, Chungnam National University) ,  Bae Kyung Sook (Korea Research Institute of Bioscience and Biotechnology)

Abstract AI-Helper 아이콘AI-Helper

Little is known about the bacterial communities associated with the plants inhabiting sand dune ecosystems. In this study, the bacterial populations associated with two major sand dune plant species, Calystegia soldanella (beach morning glory) and Elymus mollis (wild rye), growing along the costal a...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • This study will provide basic information on the diversity of bacteria associated with major plant species inhabiting the coastal sand dune area of Tae-an, Korea. While the study of bacterial diversity, using a culturedependent approach, has its own limitation, its main advantage is that a number of bacteria can actually be isolated and characterized for further study, including plant growth promoting activity and development of strategies for the restoration of vegetation in such ecosystems.
본문요약 정보가 도움이 되었나요?

참고문헌 (39)

  1. Bakker, A.W. and P. Schippers. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Psudomonas spp.-mediated plant growth-stimulation. Soil Biol. Biochem. 19, 451-457 

  2. Chanway, C.P., L.M. Nelson, and F.B. Holl. 1988. Cultivar-specific growth promotion of spring wheat (Triticum aestivum L.) by coexistent Bacillus species. Can. J. Microbiol. 34, 925-929 

  3. Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. Ph. D. thesis, University of Newcastle, Newcastle upon Tyne, UK 

  4. Cieslinski, G., K.C.J. Van-Rees, A.M. Szmigielska, and P.M. Huang. 1997. Low molecular weight organic acids released from roots of durum wheat and flax into sterile nutrient solutions. J. Plant Nutr. 20, 753-764 

  5. Dalton, D.A., S. Kramer, N. Azios, S. Fusaro, E. Cahill, and C. Kennedy. 2004. Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol. Ecol. 49, 469-479 

  6. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791 

  7. Germida, J.J., S.D. Siciliano, J.R. de Freitas, and A.M. Seib. 1998. Diversity of root-associated bacteria associated with fieldgrown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol. Ecol. 26, 43-50 

  8. Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109-117 

  9. Grayston, S.J., D. Vaughan, and D. Jones. 1996. Rhizosphere carbon flow in tree, in comparison with annual plants, the importance of root exudation and its impact on microbial diversity and nutrient availability. Appl. Soil Ecol. 5, 29-56 

  10. Grayston, S.J., S. Wang, C.D. Campbell, and A.C. Edwards. 1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30, 369-378 

  11. Hallmann, J., A. Quadt-Hallmann, W.F. Mahaffee, and J.W. Kloepper 1997. Bacteria endophytes in agricultural crops. Can. J. Microbiol. 43, 895-914 

  12. Jacobson, C.B., J.J. Pasternak, and B.R. Glick. 1994. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Psudomonas putida GR12-2. Can. J. Microbiol. 40, 1019-1025 

  13. Jeon, J.-S., S.-S. Lee, H.-Y. Kim, T.-S. Ahn, and H.-G. Song. 2003. Plant growth promotion in soil by some inoculated microorganisms. J. Microbiol. 41, 271-276 

  14. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequence. J. Mol. Evol. 16, 111-120 

  15. Lane, D.J. 1991. 16S/23S rRNA sequencing, p. 115-175. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Weley & Sons, Chichester, UK 

  16. Lee, D.-H., S.-A. Noh, and C.-K. Kim. 2000. Development of molecular biological methods to analyze bacterial species diversity in freshwater and soil ecosystems. J. Microbiol. 38, 11-17 

  17. Lemanceau, P., T. Corbererand, L. Gardan, X. Latour, G. Laguerre, J-M. Boeufgras, and C. Alabouvette. 1995. Effect of two plant species, flax (Linum usitatissinum) and tomato (Lycopersicon esculentum Mill) on the diversity of soilborne populations of fluorescent Pseudomonas. Appl. Environ. Microbiol. 61, 1004-1012 

  18. Lilley, A.K., J.C. Fry, M.J. Bailey, and M.J. Day. 1996. Comparison of aerobic heterotrophic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiol. Ecol. 21, 231-242 

  19. Lim, J.-S., M.-K. Jung, M.-S. Kim, J.-H. Ahn, and J.-O. Ka. 2004. Genetic and phenotypic diversity of (R/S)-mecoprop [2-(2-methyl-4-chlorophenoxy)propionic acid]-degrading bacterial isolated from soils. J. Microbiol. 42, 87-93. 

  20. Lucy, M., E. Reed, and B.R. Glick. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek. 86, 1-25 

  21. Mahaffee, W.F. and J.W. Kloepper. 1997. Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb. Ecol. 34, 210-223 

  22. Maloney, P.E., A.H.C. Van Bruggen, and S. Hu. 1997. Bacterial community structure in relation to the carbon environments in lettuce and tomato rhizosphere and in bulk soil. Microb. Ecol. 34, 109-117 

  23. Mantelin, S. and B. Touraine. 2004. Plant growth-promoting bacteria and nitrate availability; impacts on root development and nitrate uptake. J. Exp. Bot. 55, 27-34 

  24. Marilley, L. and M. Aragno. 1999. Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl. Soil Ecol. 13, 127-136 

  25. Marschner, P., C.H. Yang, R. Lieberei, and D.E. Crowley. 2001. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 33, 1437-1445 

  26. Merbach, W., E. Mirus, G. Knof, R. Remus, S. Ruppel, R. Russow, A. Gransee, and J. Schulze. 1999. Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J. Plant Nutr. Soil Sci. 162, 373-383 

  27. Miethling, R., G. Weiland, H. Backhaus, and C.C. Tebbe. 2000. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L 33. Microb. Ecol. 40, 43-56 

  28. Park, H.-D. and J.-O. Ka. 2003. Genetic and phenotypic diversity of dichloroprop-degrading bacteria isolated from soils. J. Microbiol. 41, 7-15 

  29. Read, D.J. 1998. Mycorrhizas and nutrient cycling in sand dune ecosystems. Coastal Sand Dunes, vol. 96, p. 89-110. In C.H. Gimmingham, W. Ritchie, B.B. Willetts and A.J. Willis (eds.), Proceedings of Symposium. The Royal Society of Edinburgh, Edinburgh 

  30. Siciliano, S.D. and J.J. Germida. 1999. Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol. Ecol. 29, 263-272 

  31. Singh, U.P., B.K. Sarma, and D.P. Singh. 2003. Effect of plant-promoting rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cier arietinum). Curr. Microbiol. 46, 131-140 

  32. Smith, S.E. and D.J. Read. 1997. Mycorrhizal Symbiosis. Academic Press, San Diego, California, USA 

  33. Sylvia, D.M. and N.J. Burks. 1988. Selection of a vesicular-arbuscular mycorrhizal fungus for practical inoculation of Uniola paniculata. Mycologia 80, 565-568 

  34. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882 

  35. Torsvik, V., J. Gokoyr, and F.L. Daae. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56, 782-787 

  36. Van Loon, L.C., P.A. Bakker, and C.M. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36, 453-483 

  37. Wei, G.J., W. Kloepper, and S. Tuzun. 1996. Induced systemic resistance to cucumber disease and increased plant growth by plant growth-promoting rhizobacteria under field condition. Phytopathology 86, 221-224 

  38. Whipps, J.M. 1990. Carbon economy, p. 59-97. In J.M. Lynch (ed.), The Rhizosphere. John Wiley & Sons, Essex, UK 

  39. Whipps, J.M. 2001. Microbial interaction and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487-511 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로