• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


The protease purified from Bacillus cereus JH108 has the function of leucine specific endopeptidase. When measured by hydrolysis of synthetic substrate (N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide), the enzyme activity exhibited optimal activity at pH 9.0, $60^{\circ}C$. The endopeptidase activity was stimulated by $Ca^{++},\;Co^{++},\;Mn^{++},\;Mg^{++},\;and\;Ni^{++}$, and was inhibited by metal chelating agents such as EDTA, 1,10-phenanthroline, and EGTA. Addition of serine protease inhibitor, PMSF, resulted in the elimination of the activity. The endopeptidase activity was fully recovered from the inhibition of EDTA by the addition of 1 mM $Ca^{++}$, and was partially restored by $Co^{++}\;and\;Mn^{++}$, indicating that the enzyme was stabilized and activated by divalent cations and has a serine residue at the active site. Addition of $Ca^{++}$ increased the pH and heat stability of endopeptidase activity. These results show that endopeptidase requires calcium ions for activity and/or stability. A Lineweaver-Burk plot analysis indicated that the $K_m$ value of endopeptidase is 0.315 mM and $V_{max}$ is 0.222 ) is $0.222\;{\mu}mol$ of N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide per min. Bestatin was shown to act as a competitive inhibitor to the endopeptidase activity.

참고문헌 (19)

  1. Barrett, A.J. 1995. Proteolytic enzymes : aspartic and metallopeptidases. Methods Enzymol. 248, 183 
  2. Rawlings, N.D. and A.J. Barrett. 1993. Evolutionary families of peptidases. Biochem. J. 290, 205-218 
  3. Son, E.-S. and J.-I. Kim. 2003. Multicatalytic alkaline serine protease from the psychrotrophic Bacillus amyloliquefaciens S94. J. Microbiol. 41, 58-62 
  4. Tajima, M., I. Urabe, K. Yutani, and H. Okada. 1976. Role of calcium ions in the thermostability of thermolysin and Bacillus subtilis var. amylosacchariticus neutral protease. Eur. J. Biochem. 64, 243-247 
  5. Watanabe. A., Y. Kamio, W. Kimura, and K. Izaki. 1993. Purification and charaterization of a thermostable neutral metalloprotease I from Chloroflexus aurantiacus J-lo-f1. Biosci. Biotechnol. Biochem. 57, 2160-2165 
  6. Sierecka, J.K. 1998. Purification and partial charaterization of a neutral protease from a virulent strain of Bacillus cereus. Int. J. Biochem. Cell. Biol. 30, 579-595 
  7. Rao, M.B., A.M. Tanksale, M.S. Ghatge, and V.V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597-635 
  8. Croux, C., V. Paquet, G. Goma, and P. Soucalille. 1990. Purification and characterization of Acidolysin, an acidic metalloprotease produced by Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 56, 3634-3642 
  9. Kim, I.S., Y.B. Kim, and K.J. Lee. 1998. Charaterization of the leupeptin- inactivating enzyme from Streptomyces exfoliatus SMF13 which produces leupeptin. Biochem. J. 331, 539-545 
  10. Matsubara, H. and J. Feder. 1971. Other bacterial, mold and yeast proteases, p.721-795. In P.D. Boyer(ed.), The enzymes, vol.3, 3rd ed. Academic Press, New York 
  11. Davail, S., G. Feller, E. Narinx, and C. Gerday. 1994. Cold adaptation of proteins; Purification, characterization, and sequence of the heat-labile subtilisin from antarctic psychrophile Bacillus TA41. J. Biol. Chem. 269, 17448-17453 
  12. Jung, H-J., H. Kim, and J.-I. Kim. 1999. Purification and characterization of $Co^{++}$-activated extracellular metalloprotease from Bacillus sp. JH108. J. Microbiol. Biotechnol. 9, 861-869 
  13. Windle, H.J. and D. Kelleher. 1997. Identification and characterization of a metalloprotease activity from Helicobacter pylori. Infect. Immun. 65, 3132-3137 
  14. Takii, Y., H. Taguchi, H. Shimoto, and Y. Suzuki. 1987. Bacillus stearothermophilus KP1236 neutral protease with strong thermostability comparable to thermolysin. Appl. Microbiol. Biotechnol. 27, 186-191 
  15. Beynon, R.J. and J.S. Bond. 1989. Proteolytic enzymes. IRL Press, Oxford 
  16. Farrell, D.H. and J.H. Crosa. 1991. Purification and charaterization of a secreted protease from the pathogenic marine bacterium Vibrio anguillarum. Biochemistry 30, 3432-3436 
  17. Kulakova, L., A. Galkin, T. Kurihara, T.Yoshimura, and N. Esaki 1999. Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain Ac10: Gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 65, 611-617 
  18. Park, I.J., J C. Yoon, S. J. Park, E. H. Kim, Y-J. Cho, and K-S. Shin. 2003. Characterization of the proteolytic activity of bacteria isolated from a rotating biological contactor. J. Microbiol. 41, 73-77 
  19. Silder, W., B. Kumpf, B. Peterhans, and H. Zuber. 1986. A neutral proteinase produced by Bacillus cereus with high sequence homology to thermolysin : production, isolation and characterization. Appl. Microbiol. Biotechnol. 25, 18-24 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일