• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Alternative Production of Avermectin Components in Streptomyces avermitilis by Gene Replacement

The journal of microbiology v.43 no.3 , 2005년, pp.277 - 284  

The avermectins are composed of eight compounds, which exhibit structural differences at three positions. A family of four closely-related major components, A1a, A2a, B1a and B2a, has been identified. Of these components, B1a exhibits the most potent antihelminthic activity. The coexistence of the '1' components and '2' components has been accounted for by the defective dehydratase of aveAI module 2, which appears to be responsible for C22-23 dehydration. Therefore, we have attempted to replace the dehydratase of aveAI module 2 with the functional dehydratase from the erythromycin eryAII module 4, via homologous recombination. Erythromycin polyketide synthetase should contain the sole dehydratase domain, thus generating a saturated chain at the C6-7 of erythromycin. We constructed replacement plasmids with PCR products, by using primers which had been derived from the sequences of avermectin aveAI and the erythromycin eryAII biosynthetic gene cluster. If the original dehydratase of Streptomyces avermitilis were exchanged with the corresponding erythromycin gene located on the replacement plasmid, it would be expected to result in the formation of precursors which contain alkene at C22-23, formed by the dehydratase of erythromycin module 4, and further processed by avermectin polyketide synthase. Consequently, the resulting recombinant strain JW3105, which harbors the dehydratase gene derived from erythromycin, was shown to produce only C22,23-unsaturated avermectin compounds. Our research indicates that the desired compound may be produced via polyketide gene replacement.

참고문헌 (28)

  1. Anzai, H., Y. Kumada, O. Hara, T. Murakaml, R. Itoh, E. Takano, S. Imai, A. Satoh, and K. Nagaoka. 1988. Replacement of Streptomyces hygroscopicus genomic segments with in vitro altered DNA sequences. J. Antibiotics. 12, 226-233 
  2. Chakraburtty, R., J. White, E. Takano, and M. J. Bibb. 1996. Cloning, characterization and disruption of a(p)ppGpp synthase gene(relA) of Streptomyces coelicolor A3(2). Mol. Microbiol. 19, 357-368 
  3. Flett, F., V. Mersinias V, and C.O. Smith. 1997. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 155, 223-229 
  4. Hopwood, D.A., M.J. Bibb, K.F. Chater, T. Kieser, C.J. Burton, H.M. Kieser, D.J. Lydiate, C.P. Smith, J.M. Ward, and H. Schremp. 1985. Genetic Manipulation of Streptomyces. A Laboratory Manual. The John Innes Foundation, Norwich, UK 
  5. Hopwood, D.A. 1997. Genetic constribution to understanding polyketides synthases. Chem. Rev. 97, 2465-2497 
  6. Ikeda, H. and S. Omura. 1997. Avermectin Biosynthesis. Chem. Rev. 97, 2591-2609 
  7. Lomovskaya, N., L. Fonstein, X. Ruan, D. Stassi, L. Katz, and C. R. Hutchinson. 1997. Gene disruption and replacement in the rapamycin-producing Streptomyces hygroscopicus strain ATCC 29253. Microbiol. 143, 875-883 
  8. Omura, S., H. Ikeda, and H. Tanaka. 1991. Selective production of specific components of Avermectins in Streptomyces avermitilis. J. Antibiotics. 44, 560-563 
  9. Kartz, L. 1997. Manipulation of modular polyketide synthases. Chem. Rev. 97, 2557-2575 
  10. Donadio, S., J.B. McAlpine, P.J. Sheldon, M. Jackson, and L. Katz. 1993. An Erythromycin Analog Produced by Reprogramming of Polyketide Synthesis. Proc. Natl. Acad. Sci. USA 90, 7119- 7123 
  11. Hotson, I.K. 1982. The avermectins: A new family of antiparasitic agents. J. S. Afr. Vet. Assoc. 53, 87-90 
  12. Cortes, J., S.F. Haydock, G.A. Roberts, D.J. Bevitt, and P.F. Leadlay. 1990. Alternative modular polyketide synthase expression controls macrolactone structure. Nature 346, 176-178 
  13. MacNeil, D.J. 1988. Characterization of a Unique Methyl-Specific Restriction System in Streptomyces avermitilis. J. Bacteriol. 170, 5607-5612 
  14. Bierman, M., R. Logan, K. O'Brien, E.T. Seno, R.N. Rao, and B.E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43-49 
  15. Ikeda, H., T. Nonomiya, M. Usami, T. Ohta, and S. Omura. 1999. Organization of the biosynthetic gene cluste for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA 96, 9509-9514 
  16. Bevitt, D.J., J. Cortes, S.F. Haydock, and P.F. Leadlay. 1992. 6- Deoxyerythronolide-B synthase 2 from Saccharopolyspora erythraea. Cloning of the structural gene, sequence analysis and inferred domain structure of the multifunctional enzyme. Eur. J. Biochem. 204, 39-49 
  17. Needleman, P., J. Turk, B.A. Jakschik, A.R. Morrison, and J.B. Lefkowith. 1986. Arachidonic acid metabolism. Annu. Rev. Biochem. 55, 69-102 
  18. MacNeil, D.J., K.M. Gewain, C.L. Ruby, G. Dezeny, P.H. Gibbons, and T. MacNeil. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111, 61-68 
  19. Cane, D.E., T.-C. Liangm, L.K. Kaplan, M.K. Nallin, M.D. Schulman, O.D. Hensens, A.W. Douglas, and G. Albers-Schonberg. 1983. Biosynthetic origin of the carbon skeleton and oxygen atoms of the avermectins. J. Am. Chem. Soc. 105, 4110-4112 
  20. Egerton, J.R., D.A. Ostlind, L.S. Blair, C.H. Eary, D. Suhayda, S. Cifelli, R.F. Riek, and W.C. Campbell. 1979. Avermectins, new family of potent anthelmintic agents: efficacy of the B1a component. Antimicrob. Agents Chemother. 15, 372-8 
  21. Sambrook, J., E.F. Fritsch, and T. Maniats. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold spring Harbor Laboratory Press, Cold spring Harbor, New York 
  22. Buttner, M.J., K.F. Chater, and M.J. Bibb. 1990. Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2). J. Bacteriol. 172, 3367-3378 
  23. Campbell, W.C. 1982. Efficacy of the avermectins against filarial parasites. Vet. Res. Commun. 5, 251-62 
  24. MacNeil, D.J., J.L. Occi, K.M. Gewain, T. MacNeil, P.H. Gibbons, C.L. Ruby, and S.J. Danis. 1992. Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115, 119-125 
  25. Xue, Y., L. Zhao, H.W. Liu, and D.H. Sherman. 1998. A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: Architecture of metabolic diversity. Proc. Natl. Acad. Sci. USA 95, 12111-12116 
  26. Burg, R.W., B.M. Miller, E.E. Baker, J. Birnbaum, S.A. Currie, R.L. Hartman, Y.L. Kong, Monaghan, R.L.G. Olson, I. Putter, J.B. Tunac, H. Wallick, E.O. Stapley, R. Oiwa, and S. Omura. 1979. Avermectins, New family of potent anthelmintic agents: Producing organism and fermentation. Antimicrob. Agents. Chemother. 15, 361-367 
  27. Donadio, S., M.J. Staver, J.B. McAlpine, S.J. Swanson, and L. Katz. 1991. Modular organization of genes required for complex polyketide biosynthesis. Science 252, 675-679 
  28. Arena, J.P., K.K. Liu, P.S. Paress, and D.F. Cully. 1991. Avermectin- sensitive chloride currents induced by Caenorhabditis elegans RNA in Xenopus oocytes. Mol. Pharmacol. 40, 368-74 

이 논문을 인용한 문헌 (1)

  1. 2006. "" The journal of microbiology, 44(6): 649~654 


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일