A bacterial strain M4-7 capable of degrading various polyesters, such as poly$(\varepsilon-caprolactone)$, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxyoctanoate), and poly(3-hydroxy-5-phenylvalerate), was isolated from a marine environment and identified as Pseudomonas alcaligenes. The relative molecular mass of a purified extracellular medium-chain-length poly(3-hydroxyalkanoate) (MCL-PHA) depolymerase $(PhaZ_{palM4-7})$ from P. alcaligenes M4-7 was 28.0 kDa, as determined by SDS-PAGE. The $PhaZ_{palM4-7}$ was most active in 50 mM glycine-NaOH buffer (pH 9.0) at $35^{\circ}C$. It was insensitive to dithiothreitol, sodium azide, and iodoacetamide, but susceptible to p-hydroxymercuribenzoic acid, N-bromosuccinimide, acetic anhydride, EDTA, diisopropyl fluorophosphate, phenylmethylsulfonyl fluoride, Tween 80, and Triton X-100. In this study, the genes encoding MCL-PHA depolymerase were cloned, sequenced, and characterized from a soil bacterium, P. alcaligenes LB19 (Kim et al., 2002, Biomacro-molecules 3, 291-296) as well as P. alcaligenes M4-7. The structural gene $(phaZ_{palLB19})$ of MCL-PHA depolymerase of P. alcaligenes LB19 consisted of an 837 bp open reading frame (ORF) encoding a protein of 278 amino acids with a deduced $M_r$ of 30,188 Da. However, the MCL-PHA depolymerase gene $(phaZ_{palM4-7})$ of P. alcaligenes M4-7 was composed of an 834 bp ORF encoding a protein of 277 amino acids with a deduced Mr of 30,323 Da. Amino acid sequence analyses showed that, in the two different polypeptides, a substrate-binding domain and a catalytic domain are located in the N-terminus and in the C-terminus, respectively. The $PhaZ_{palLB19}$ and the $PhaZ_{palM4-7}$ commonly share the lipase box, GISSG, in their catalytic domains, and utilize $^{111}Asn$ and $^{110}Ser$ residues, respectively, as oxyanions that play an important role in transition-state stabilization of hydrolytic reactions.
Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. Ph.D. Thesis. University of Newcastle, UK
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685
Quinteros, R., S. Goodwin, R.W. Lenz, and W.H. Park. 1999. Extracellular degradation of medium chain length poly($\beta$-hydroxyalkanoates by Comamonas sp.. Int. J. Biol. Macromol. 25, 135-143
Roberts, J.D., J. Kraut, R.A. Alden, and J.J. Birktoft. 1972. Subtilisin: a stereochemical mechanism involving transition-state stabilization. Biochemistry 11, 4293-4303
Schirmer, A., D. Jendrossek, and H.G. Schlegel. 1993. Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13. Appl. Environ. Microbiol. 59, 1220-1227.
Steinbüchel, A. and H.E. Valentin. 1995. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 128, 219-228
Syn, C.K.C. and S. Swarup. 2000. A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. Anal. Biochem. 278, 86-90
Schirmer, A. and D. Jendrossek. 1994. Molecular characterization of the extracellular poly(3-hydroxyoctanoic acid) [P(3HO)] depolymerase gene of Pseudomonas fluorescens GK13 and of its gene product. J. Bacteriol. 176, 7065-7073.
Lageveen, R.G., G.W. Huisman, H. Preusting, P. Ketelaar, G. Eggink, and B. Witholt. 1988. Formation of polyesters by Pseudomonas oleovorans: effect of substrate on formation and composition poly-(R)-3-hydroxyalkanoates and poly-(R)-3- hydroxyalkenoates. Appl. Environ. Microbiol. 54, 2924-2932
Kim, D.Y., Y.B. Kim, and Y.H. Rhee. 2000c. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Biol. Macromol. 28, 23-29
Klingbeil, B., R.M. Kroppenstedt, and D. Jendrossek. 1996. Taxonomic identification of Streptomyces exfoliatus K10 and characterization of its poly(3-hydroxybutyrate) depolymerase gene. FEMS Microbiol. Lett. 142, 215-221
Dunn, M.J. 1996. Electroelution of proteins from polyacrylamide gels. Methods Mol. Biol. 59, 357-362
Foster, L.J.R., S.J. Zervas, R.W. Lenz, and R.C. Fuller. 1995. The biodegradation of poly-3-hydroxyalkanoates, PHAs, with long alkyl substituents by Pseudomonas maculicola. Biodegradation 6, 67-73
Kim, H., H.S. Ju, and J. Kim. 2000b. Characterization of an extracellular poly(3-hydroxy-5-phenylvalerate) depolymerase from Xanthomonas sp. JS02. Appl. Microbiol. Biotechnol. 53, 323-327
Elbanna, K., T. Lütke-Eversloh, D. Jendrossek, H. Luftmann, and A. Steinüchel. 2004. Studies on the biodegradability of polythiester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Arch. Microbiol. 182, 212-225
Choi, G.G., M.W. Kim, J.Y. Kim, and Y.H. Rhee. 2003. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molar fractions of 3-hydroxyvalerate by a threonine overproducing mutant of Alcaligenes sp. SH-69. Biotechnol. Lett. 13, 632-635
Park, J.S., J.Y. Choi, P.M. Joung, S.J. Park, Y.H. Rhee, and K.S. Shin. 2001. Isolation of a medium chain length polyhydroxyalkanoic acids degrading bacterium, Janthinobacterium lividum. J. Microbiol. 39, 139-141
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microorganism quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254
Kim, D.Y., J.S. Nam, and Y.H. Rhee. 2002. Characterization of an extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Pseudomonas alcaligenes LB19. Biomacromolecules 3, 291-296
Jendrossek, D. 2001. Microbial degradation of polyesters. Adv. Biochem. Eng. Biotechnol. 71, 293-325
Kasuya, K.I., H. Mitomo, M. Nakahara, A. Akiba, T. Kudo, and Y. Doi. 2000. Identification of marine benthic P(3HB)-degrading bacterium isolate and characterization of its P(3HB) depolymerase. Biomacromolecules 1, 194-201
Kim, D.Y. and Y.H. Rhee. 2003. Biodegradation of microbial and synthetic polyesters by fungi. Appl. Microbiol. Biotechnol. 61, 300-308
Chung, S.H., G.G. Choi, H.W. Kim, and Y.H. Rhee. 2001. Effect of levulinic acid on the production of poly(3-hydroxybutyrate-co- 3-hydroxyvalerate) by Ralstonia eutropha KHB-8862. J. Microbiol. 39, 79-82
Kim, H.M., K.E. Ryu, K.S. Bae, and Y.H. Rhee. 2000a. Purification and characterization of extracellular medium-chain-length polyhydroxyalkanoate deolymerase from Pseudomonas sp. RY- 1. J. Biosci. Bioeng. 89, 196-198
Kim, H.J., D.Y. Kim, J.S. Nam, K.S. Bae, and Y.H. Rhee. 2003. Characterization of an extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Streptomyces sp. KJ-72. Antonie van Leeuwenhoek 83, 183-189
Ramsay, B.A., I. Saracovan, J.A. Ramsay, and R.H. Marchessault. 1994. A method for the isolation of a microorganism producing extracellular long-side-chain poly($\beta$-hydroxyalkanoate) depolymerase. J. Environ. Polym. Degrad. 2, 1-7
Jendrossek, D., A. Schirmer, and H.G. Schlegel. 1997. Recent advances in characterization of bacterial PHA depolymerases, p. 89-101. In G. Eggink, A. Steinbüchel, Y. Poirier, B. Witholt (eds.), Proceedings of International Symposium on Bacterial Polyhydroxyalkanoates. NRC Research Press, Ottawa, Canada
이 논문을 인용한 문헌 (2)
2006. "" Journal of microbiology and biotechnology, 16(12): 1935~1939
2007. "" The journal of microbiology, 45(2): 87~97