$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

A bacterial strain M4-7 capable of degrading various polyesters, such as poly$(\varepsilon-caprolactone)$, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxyoctanoate), and poly(3-hydroxy-5-phenylvalerate), was isolated from a marine environment and identified as Pseudomonas alcaligenes. The relative molecular mass of a purified extracellular medium-chain-length poly(3-hydroxyalkanoate) (MCL-PHA) depolymerase $(PhaZ_{palM4-7})$ from P. alcaligenes M4-7 was 28.0 kDa, as determined by SDS-PAGE. The $PhaZ_{palM4-7}$ was most active in 50 mM glycine-NaOH buffer (pH 9.0) at $35^{\circ}C$. It was insensitive to dithiothreitol, sodium azide, and iodoacetamide, but susceptible to p-hydroxymercuribenzoic acid, N-bromosuccinimide, acetic anhydride, EDTA, diisopropyl fluorophosphate, phenylmethylsulfonyl fluoride, Tween 80, and Triton X-100. In this study, the genes encoding MCL-PHA depolymerase were cloned, sequenced, and characterized from a soil bacterium, P. alcaligenes LB19 (Kim et al., 2002, Biomacro-molecules 3, 291-296) as well as P. alcaligenes M4-7. The structural gene $(phaZ_{palLB19})$ of MCL-PHA depolymerase of P. alcaligenes LB19 consisted of an 837 bp open reading frame (ORF) encoding a protein of 278 amino acids with a deduced $M_r$ of 30,188 Da. However, the MCL-PHA depolymerase gene $(phaZ_{palM4-7})$ of P. alcaligenes M4-7 was composed of an 834 bp ORF encoding a protein of 277 amino acids with a deduced Mr of 30,323 Da. Amino acid sequence analyses showed that, in the two different polypeptides, a substrate-binding domain and a catalytic domain are located in the N-terminus and in the C-terminus, respectively. The $PhaZ_{palLB19}$ and the $PhaZ_{palM4-7}$ commonly share the lipase box, GISSG, in their catalytic domains, and utilize $^{111}Asn$ and $^{110}Ser$ residues, respectively, as oxyanions that play an important role in transition-state stabilization of hydrolytic reactions.

참고문헌 (27)

  1. Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. Ph.D. Thesis. University of Newcastle, UK 
  2. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 
  3. Quinteros, R., S. Goodwin, R.W. Lenz, and W.H. Park. 1999. Extracellular degradation of medium chain length poly($\beta$-hydroxyalkanoates by Comamonas sp.. Int. J. Biol. Macromol. 25, 135-143 
  4. Roberts, J.D., J. Kraut, R.A. Alden, and J.J. Birktoft. 1972. Subtilisin: a stereochemical mechanism involving transition-state stabilization. Biochemistry 11, 4293-4303 
  5. Schirmer, A., D. Jendrossek, and H.G. Schlegel. 1993. Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13. Appl. Environ. Microbiol. 59, 1220-1227. 
  6. Steinbüchel, A. and H.E. Valentin. 1995. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 128, 219-228 
  7. Syn, C.K.C. and S. Swarup. 2000. A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. Anal. Biochem. 278, 86-90 
  8. Schirmer, A. and D. Jendrossek. 1994. Molecular characterization of the extracellular poly(3-hydroxyoctanoic acid) [P(3HO)] depolymerase gene of Pseudomonas fluorescens GK13 and of its gene product. J. Bacteriol. 176, 7065-7073. 
  9. Lageveen, R.G., G.W. Huisman, H. Preusting, P. Ketelaar, G. Eggink, and B. Witholt. 1988. Formation of polyesters by Pseudomonas oleovorans: effect of substrate on formation and composition poly-(R)-3-hydroxyalkanoates and poly-(R)-3- hydroxyalkenoates. Appl. Environ. Microbiol. 54, 2924-2932 
  10. Kim, D.Y., Y.B. Kim, and Y.H. Rhee. 2000c. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Biol. Macromol. 28, 23-29 
  11. Klingbeil, B., R.M. Kroppenstedt, and D. Jendrossek. 1996. Taxonomic identification of Streptomyces exfoliatus K10 and characterization of its poly(3-hydroxybutyrate) depolymerase gene. FEMS Microbiol. Lett. 142, 215-221 
  12. Dunn, M.J. 1996. Electroelution of proteins from polyacrylamide gels. Methods Mol. Biol. 59, 357-362 
  13. Foster, L.J.R., S.J. Zervas, R.W. Lenz, and R.C. Fuller. 1995. The biodegradation of poly-3-hydroxyalkanoates, PHAs, with long alkyl substituents by Pseudomonas maculicola. Biodegradation 6, 67-73 
  14. Kim, H., H.S. Ju, and J. Kim. 2000b. Characterization of an extracellular poly(3-hydroxy-5-phenylvalerate) depolymerase from Xanthomonas sp. JS02. Appl. Microbiol. Biotechnol. 53, 323-327 
  15. Elbanna, K., T. Lütke-Eversloh, D. Jendrossek, H. Luftmann, and A. Steinüchel. 2004. Studies on the biodegradability of polythiester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Arch. Microbiol. 182, 212-225 
  16. Choi, G.G., M.W. Kim, J.Y. Kim, and Y.H. Rhee. 2003. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molar fractions of 3-hydroxyvalerate by a threonine overproducing mutant of Alcaligenes sp. SH-69. Biotechnol. Lett. 13, 632-635 
  17. Park, J.S., J.Y. Choi, P.M. Joung, S.J. Park, Y.H. Rhee, and K.S. Shin. 2001. Isolation of a medium chain length polyhydroxyalkanoic acids degrading bacterium, Janthinobacterium lividum. J. Microbiol. 39, 139-141 
  18. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microorganism quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 
  19. Kim, D.Y., J.S. Nam, and Y.H. Rhee. 2002. Characterization of an extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Pseudomonas alcaligenes LB19. Biomacromolecules 3, 291-296 
  20. Jendrossek, D. 2001. Microbial degradation of polyesters. Adv. Biochem. Eng. Biotechnol. 71, 293-325 
  21. Kasuya, K.I., H. Mitomo, M. Nakahara, A. Akiba, T. Kudo, and Y. Doi. 2000. Identification of marine benthic P(3HB)-degrading bacterium isolate and characterization of its P(3HB) depolymerase. Biomacromolecules 1, 194-201 
  22. Kim, D.Y. and Y.H. Rhee. 2003. Biodegradation of microbial and synthetic polyesters by fungi. Appl. Microbiol. Biotechnol. 61, 300-308 
  23. Chung, S.H., G.G. Choi, H.W. Kim, and Y.H. Rhee. 2001. Effect of levulinic acid on the production of poly(3-hydroxybutyrate-co- 3-hydroxyvalerate) by Ralstonia eutropha KHB-8862. J. Microbiol. 39, 79-82 
  24. Kim, H.M., K.E. Ryu, K.S. Bae, and Y.H. Rhee. 2000a. Purification and characterization of extracellular medium-chain-length polyhydroxyalkanoate deolymerase from Pseudomonas sp. RY- 1. J. Biosci. Bioeng. 89, 196-198 
  25. Kim, H.J., D.Y. Kim, J.S. Nam, K.S. Bae, and Y.H. Rhee. 2003. Characterization of an extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Streptomyces sp. KJ-72. Antonie van Leeuwenhoek 83, 183-189 
  26. Ramsay, B.A., I. Saracovan, J.A. Ramsay, and R.H. Marchessault. 1994. A method for the isolation of a microorganism producing extracellular long-side-chain poly($\beta$-hydroxyalkanoate) depolymerase. J. Environ. Polym. Degrad. 2, 1-7 
  27. Jendrossek, D., A. Schirmer, and H.G. Schlegel. 1997. Recent advances in characterization of bacterial PHA depolymerases, p. 89-101. In G. Eggink, A. Steinbüchel, Y. Poirier, B. Witholt (eds.), Proceedings of International Symposium on Bacterial Polyhydroxyalkanoates. NRC Research Press, Ottawa, Canada 

이 논문을 인용한 문헌 (2)

  1. 2006. "" Journal of microbiology and biotechnology, 16(12): 1935~1939 
  2. 2007. "" The journal of microbiology, 45(2): 87~97 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일