$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Biomolecular Strategies for Preparation of High Quality Surimi-Based Products 원문보기

Journal of food science and nutrition, v.10 no.2, 2005년, pp.191 - 197  

Nakamura Soichiro (Department of Bioscience and Technology, Faculty of Agricultural Sciences, Shinshu University) ,  Ogawa Masahiro (Department of Biochemistry and Food Science, Faculty of Agricultural, Kagawa University)

Abstract AI-Helper 아이콘AI-Helper

There exist two interesting phenomena in making seafood products from surimi. When salted surimi is kept at a constant low temperature $(4\~40^{\circ}C)$, its rheological properties change from sol to gel, which is called 'setting'. Seafood processors can exploit changes that occur during...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Carp acclimated to cold-water (10℃) have myosin with lower stability than carp acclimated to warm-water (30℃). The report shows high environmental adaptability of fish. Kawabata et al.
본문요약 정보가 도움이 되었나요?

참고문헌 (64)

  1. An H, Peters MY, Seymour TA. 1996. Roles of endogeneous enzymes in surimi gelation. Trends Food Sci Technol 7: 321-326 

  2. Samejima K, Ishioroshi M, Yasui T. 1981. Relative role of the head and tail portions of the molecule in heatinduced gelatin of myosin. J Food Sci 46: 1412-1418 

  3. Watabe S, Hirayama Y, Nakaya M, Kakinuma M, Guo X-F, Kanoh S, Chaen S, Ooi T. 1998. Carp expresses fast skeletal myosin isoforms with altered motor functions and structural stabilities to compensate for changes in environmental temperature. J Them Biol 22: 375-390 

  4. Ojima T, Kawashima N, Inoue A, Amauchi A, Togashi M, Watabe S, Nishita K. 1998. Determination of primary structure of heavy meromyosin region of walleye pollack myosin heavy chain by cDNA cloning. Fish Sci 64: 812-819 

  5. Kawabata R, Kanzawa N, Ogawa M, Tsuchiya T. 2000. Determination of primary structure of amberjack myosin heavy chain and its relationship with structural stability of various fish myosin rods. Fish Physiol Biochem 23: 283-294 

  6. Ogawa M, Tarmya T, Tuschiya T. 1994. Structural changes of carp yosin during heating. Fish Sci 60: 723-727 

  7. Johnston IA, Goldspink G. 1975. Thermodynamic activation parameters of fish myofibrillar ATPase enzyme and evolutionary adaptations to temperature. Nature 257: 620-622 

  8. Hashimoto A, Kobayashi A, Arai K. 1982. Thermostability of fish myofibrillar Ca-ATPase and adaptation to environmental temperature. Nippon Suisan Gakkaishi 48: 671-684 

  9. Ogawa M, Tamiya T, Tsuchiya T. 1996. $\alpha$ -Helical structure of fish actomyosin changes during storage. J Agric Food Chem 44: 2944-2925 

  10. Rodgers ME, Karr T, Biedermann K, Ueno H, Harrington WF. 1987. Thermal stability of myosin rod from various species. Biochem 26: 8703-8708 

  11. Kakinuma M, Nakaya M, Hatanaka A, Hirayama Y, Watabe S, Maeda K, Ooi T, Suzuki S. 1998. Thermal unfolding of three acclimation temperature-associated isoforms of carp light meromyosin expressed by recombinant DNAs. Biochem 37: 6606-6613 

  12. Shimizu Y, Machida R, Takenami S. 1981. Species variations in the gel-forming characteristics of fish meat paste. Nippon Suisan Gakkaishi 47: 95-104 

  13. Niwa E, Suzuki R, Hamada I. 1981. Fluorometry of the setting of fish flesh sol-supplement. Nippon Suisan Gakkaishi 47: 1389 

  14. Itoh Y, Yoshinaka R, Ikeda S. 1979. Effects of sulfhydryl reagents on the gel formation of carp actomyosin by heating. Nippon Suisan Gakkaishi 45: 1023-1025 

  15. Taguchi T, Kikuchi K, Oguni M, Tanaka M, Suzuki K. 1978. Heat changes of myosin B $Mg^{2+}$ -ATPase and 'setting' of fish meat paste. Nippon Suisan Gakkaishi 44: 1363-1366 

  16. Seki N, Uno H, Lee N, Kimura I, Toyoda K, Fujita T, Arai K. 1990. Transglutaminase activity in Alaska pollack muscle and surimi, and its reaction with myosin B. Nippon Suisan Gakkaishi 56: 125-132 

  17. Numakura T, Seki N, Kimura I, Toyoda K, Fujita T, Takama K, Arai K. 1985. Cross-linking reaction of myosin in the fish paste during setting (suwari). Nippon Suisan Gakkaishi 51: 1559-1565 

  18. Nowsad AAKM, Kanoh S, Niwa E. 1994. Setting of surimi paste in which trans glutaminase is inactivated N-ethylmaleimide. Fish Sci 60: 189-191 

  19. Sano T, Noguchi SF, Matsumoto JJ, Tsuchiya T. 1990. Effect of ionic strength on dynamic viscoelastic behavior of myosin during thermal gelation. J Food Sci 55: 51-54 

  20. Visessanguan W, Ogawa M, Nakai S, An H. 2000. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin. J Agric Food Chem 48: 1016-1023 

  21. Ogawa M, Kanamaru J, Miyashita H, Tamiya T, Tsuchiya T. 1995. Alpha-helical structure of fish actomyosin: Changes during setting. J Food Sci 60: 297-299 

  22. Ogawa M, Nakamura S, Horimoto Y, An H, Tsuchiya T, Nakai S. 1999. Raman spectroscopic study of changes in fish actomyosin during setting. J Agric Food Chem 47: 3309-3318 

  23. Arakawa T, Timasheff SN. 1982. Stabilization of protein structure by sugars. Biochem 21: 6536-6544 

  24. Carpenter JF, Crowe JH. 1988. The mechanism of cryoprotection of proteins by solutes. Cryobiol 25: 244-255 

  25. MacDonald GA, Lanier T. 1991. Carbohydrates as cryoprotectants for meats and surimi. Food Technol 45: 151-159 

  26. Sato S, Tsuchiya T. 1992. Microstructure of surimi and surimi-based products. In Surimi technology. Lanier TC, Lee CM, eds. Marcel Dekker, New York. p 501-518 

  27. Sultanbawa Y, Li-Chan EC. 2001. Structural changes in natural actomyosin and surimi from ling cod (Ophiodon elongatus) during frozen storage in the absence or presence of cryoprotectants. J Agric Food Chem 49: 4716-4725 

  28. Kimira I, Sugimoto M, Toyoda K, Seki N, Arai K, Fujita T. 1991. A study on cross-linking reaction of myosin in kamaboko 'surimi' gels. Nippon Suisan Gakkaishi 57: 1389-1396 

  29. Sakamoto H, Kumazawa Y, Toiguchi S, Seguro K, Soeda T, Motoki M. 1995. Gel strength enhancement by addition of microbial trans glutaminase during inshore surimi manufacture. J Food Sci 60: 300-304 

  30. Seguro K, Nozawa Y, Ohtsuka T, Toiguchi S, Motoki M. 1995. Microbial transgulutaminase and $\varepsilon$ -( $\gamma$ -glutamyl) lysine crosslink effects on alastic properties of kamaboko gels. J Food Sci 60: 305-311 

  31. Jiang ST, Leu AZ, Tsai GJ. 1998. Cross-linking of mackerel surimi by microbial transglutaminase and ultraviolet irradiation. J Agric Food Chem 46: 5278-5282 

  32. Jiang ST, Hsieh JF, Ho ML, Chung YC. 2000. Combination effects of microbial trans glutaminase, reducing agent and protease inhibitor on the quality of haitail surimi. J Food Sci 65: 421-425 

  33. Jiang ST, Hsieh JF, Ho ML, Chung YC. 2000. Microbial trans glutaminase affects gel properties of golden threadfinbream and Pollack surimi. J Food Sci 65: 694-699 

  34. Hssieh JF, Tsai GJ, Jiang ST. 2002. Microbial transglutaminase and recombinant cystatin effects on improving the quality of mackerel surimi. J Food Sci 67: 3120-3125 

  35. Jiang ST, Hsieh JF, Tsai GJ. 2004. Interactive effects of microbial transglutaminase and recombinant cystatin on the mackerel and hairtail muscle protein. J Agric Food Chem 52: 3617-3625 

  36. Lorand L. 1983. Post-translationalpathways for generation $\varepsilon$ -( $\gamma$ -glutarnyl) lysine cross-links. In Chemistry and biology of 2-macroglobulin. Feinman RD, ed. The New York Academy of Sciences, New York. p 10-27 

  37. Kawai M, Takehana S, Takagi H. 1997. High-level expression of the chemically synthesized gene for microbial trans glutaminase from Streptoverticillium in Escherichia coli. Biosci Biotechnol Biochem 61: 830-835 

  38. Yokoyama Kl, Nakamura N, Seguro K, Kubota K. 2000. Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci Biotechnol Biochem 64: 1263-1270 

  39. Nishimura K, Ohishi N, Tanaka Y, Ohgita M, Takeuchi Y, Watanabe H, Gejima A, Samejima E. 1992. Effects of ascorbic acid on the formation process for heat-induced gel of fish meat (kamaboko). Biosci Biotech Biochem 56: 1737-1743 

  40. Kaiser ST, Belitz HD. 1973. Specificity of potato isoinhibitors towards various proteolytic enzymes. Z Lebensm Unters Forsch 151: 18-22 

  41. Hamann DD, Amato PM, Wu MC, Foegeding EA. 1990. Inhibition of modori (gel weaiening) in surimi by plasma hydrolysate ane egg white. J Food Sci 55: 665-669 

  42. Wasso DH, Reppond KD, Babbitt JK, French JS. 1992. Effects of additives on proteolytic and functional properties of arrowtooth flounder surimi. J Aquat Food Prod Technol 1: 147-165 

  43. Anazawa H, Miyauchi Y, Sakurada K, Wasson DH, Repond KD. 1993. Evaluation of protease inhibitors in Pacific whitening surimi. J Aquat Food Prod Technol 2: 79-95 

  44. Porter R, Koury B, Kudo G. 1993. Inhibition of protease activity in muscle extracts and surimi from Pacific whiting, Merluccious productus, and arrowtooth flounder, Atheresthes stomias. Marine Fish Rev 55: 10-15 

  45. Reppond KD, Babbittt JK. 1993. Protease inhibitors affect physical properties of arrowtooth flounder and well eye Pollock surimi. J Food Sci 58: 96-98 

  46. Morrissey MT, Wu JW, Lin DD, An H. 1993. Effect of food grade protease inhibitor on autolysis and gel strength of surimi. J Food Sci 58: 1050-1054 

  47. Werasinghe VC, Morrissey MT, An H. 1996. Characterization of active components in food-grade proteinase inhibitor for surimi manufacture. J Agric Food Chem 44: 2584-2590 

  48. Garcia-Carreno FL, Navarrette Del Toro MA, Diaz-Lopez M, Hernandez-Cortes MP, Ezquerra JM. 1996. Proteinase inhibition of fish muscle enzymes using legume seed extracts. J Food Prot 59: 312-318 

  49. Seymore TA, Peters MY, Morrissey MT, An H. 1997. Surimi gel enahacement by bovine plasma proteins. J Agric Food Chem 45: 2919-2923 

  50. An H, Weerasinghe V, Seymour TA, Morrissey MT. 1994. Degradation of Pacific whiteing surimi proteins by cathepsins. J Food Sci 59: 1013-1017 

  51. Yamashita M, Konagaya S. 1990. High activities of cathepsins B, D, H and L in the white muscle of chum salmon in spawning migration. Comp Biochem Physiol 95B: 149-152 

  52. Turk V, Bode W. 1991. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285: 213-219 

  53. Kirschke H, Barrett AJ. 1987. Chemistry of lysosomal proteases. In Lysosomes-Their role in protein breakdown. Glaumann H, Ballard FJ, eds. Academic Press, London. p 193-238 

  54. Lenarcic ICB, Kraoovec M, Ritonja A, Olafsson I, Turk V. 1991. Inactivation of human cystatin C and kininogen by human cathepsin D. FEBS Lett 280: 211-215 

  55. Nakamura S, Takasaki H, Kobayashi K, Kato A. 1993. Hyperglycosylation of hen egg white lysozyme in yeast. J Biol Chem 268: 12706-12712 

  56. Nakamura S, Ogawa M, Nakai S. 1998. Effects of polymannosylation of recombinant cystatin C in yeast on its stability and activity. J Agric Food Chem 46: 2882-2887 

  57. Nakamura S, Ogawa M, Saito M, Nakai S. 1998. Application of polymannosylated cystatin to surimi from roeherring to prevent gel weakening. FEBS Lett 427: 252-254 

  58. Sano T, Noguchi SF, Tsuchiya, Matsumoto JJ. 1986. Contribution of paramyosin to marine meat gel characteristics. J Food Sci 51: 946-950 

  59. Liu D, ShiozawaY, Kanoh S, Niwa E. 1997. Effect of measuring temperature on the physical properties of horse mackerel gels. Nippon Suisan Gakkaishi 63: 231-236 

  60. Olden K, Bernet BA, Humphries MJ, Yeo T-K, Yeo K-T, White SL, Newton SA, Bauer HC, Parent JB. 1985. Function of glycoprotein glycans. Trends Biochem Sci 10: 7882 

  61. Gu J, Matsuda T, Nakamura R, Ishiguro H, Ohkubo I, Sasaki M, Takahashi N. 1989. Chemical deglycosylation of hen ovomucoid: protective effect of carbohydrate moiety on tryptic hydrolysis and heat denaturation. J Biochem 106: 66-70 

  62. Hall A, Hakansson K, Mason RW, Grubb A, Abrahamson M. 1995. Structural basis for the biological specificity of cystatin C. Identification of leucine 9 in the N-terminal binding region as a selectivity-conferring residue in the inhibition of mammalian cysteine peptidases. J Biol Chem 270: 5115-5121 

  63. Jiang S, Chen G, Tang S, Chen C. 2002. Effect of glycosylation modification ( $N-Q-^{108}I{\rightarrow}N-Q-^{108}T$ ) on the freezing stability of recombinant chicken cystatin overexpressed in Pichia pastoris X-33. J Agric Food Chem 50: 5313-5317 

  64. Tzeng S, Jiang S. 2004. Glycosylation modification improved the characteristics of recombinant chicken cystatin and its application on mackerel surimi. J Agric Food Chem 52: 3612-3616 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로