• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


Our previous report demonstrated that chick myoblasts are equipped with $Ca^{2+}$-permeable stretchactivated channels and $Ca^{2+}-activated$ potassium channels ($K_{Ca}$), and that hyperpolarization-induced by $K_{Ca}$ channels provides driving force for $Ca^{2+}$ influx through the stretch-activated channels into the cells. Here, we showed that acetylcholine (ACh) also hyperpolarized the membrane of cultured chick myoblasts, suggesting that nicotinic acetylcholine receptor (nAChR) may be another pathway for $Ca^{2+}$ influx. Under cell-attatched patch configuration, ACh increased the open probability of $K_{Ca}$ channels from 0.007 to 0.055 only when extracellular $Ca^{2+}$ was present. Nicotine, a nAChR agonist, increased the open probability of $K_{Ca}$ channels from 0.008 to 0.023, whereas muscarine failed to do so. Since the activity of $K_{Ca}$ channel is sensitive to intracellular $Ca^{2+}$ level, nAChR seems to be capable of inducing $Ca^{2+}$ influx. Using the $Ca^{2+}$ imaging analysis, we were able to provide direct evidence that ACh induced $Ca^{2+}$ influx from extracellular solution, which was dramatically increased by valinomycin-mediated hyperpolarization. In addition, ACh hyperpolarized the membrane potential from $-12.5{\pm}3$ to $-31.2{\pm}5$ mV by generating the outward current through $K_{Ca}$ channels. These results suggest that activation of nAChR increases $Ca^{2+}$ influx, which activates $K_{Ca}$ channels, thereby hyperpolarizing the membrane potential in chick myoblasts.

참고문헌 (38)

  1. Constantin B, Cognard C, Raymond G. Myoblast fusion requires cytosolic $Ca^{2+}$ elevation but not activation of voltage-dependent $Ca^{2+}$ channels. Cell Calcium 19: 365-374, 1996 
  2. Cossu G, Eusebi F, Grassi F, Wanke E. Acetylcholine receptor channels are present in undifferentiated satellite cells but not in embryonic myoblasts in culture. Dev Biol 123: 43-50, 1987 
  3. Easton TG, Reich E. Muscle differentiation in cell culture. Effects of nucleoside inhibitors and Rous sarcoma virus. J Biol Chem 247: 6420-6431, 1972 
  4. Entwistle A, Zalin RJ, Warner AE, Bevan S. A role for acetylcholine receptors in the fusion of chick myoblasts. J Cell Biol 106: 1703- 1712, 1988 
  5. Fischbach GD, Nameroff M, Nelson PG. Electrical properties of chick skeletal muscle fibers developing in cell culture. J Cell Physiol 78: 289-300, 1971 
  6. Hille B. Ligand-gated channels of fast chemical synapses. In: Hille B ed, Ionic channels of excitable cell membranes. 3rd ed. Sinauer Associates Inc., Massachusetts, p 169-199, 1992 
  7. Krause RM, Hamann M, Bader CR, Liu JH, Baroffio A, Bernheim L. Activation of nicotinic acetylcholine receptors increases the rate of fusion of cultured human myoblasts. J Physiol (Lond) 489: 779-790, 1995 
  8. Latorre R, Oberhauser A, Labarca P, Alvarez O. Varieties of $Ca^{2+}$-activated potassium channels. Annu Rev Physiol 51: 385-399, 1989 
  9. McDonald TF, Pelzer S, Trautwein W, Pelzer DJ. Regulation and modulation of $Ca^{2+}$ channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74: 365-507, 1994 
  10. Park JY, Shin KS, Kwon H, Rhee JG, Kang MS, Chung CH. Role of hyperpolarization attained by linoleic acid in chick myoblast fusion. Exp Cell Res 251: 307-317, 1999 
  11. Park JY, Lee D, Maeng JU, Koh DS, Kim K. Hyperpolarization, but not depolarization, increases intracellular $Ca^{2+}$ level in cultured chick myoblasts. Biochem Biophys Res Commun 290: 1176-1182, 2002 
  12. Siegelbaum SA, Trautmann A, Koenig J. Single acetylcholine activated channel currents in developing muscle cells. Dev Biol 104: 366-379, 1984 
  13. Spector I, Prives JM. Development of electrophysiological and biochemical membrane properties during differentiation of embryonic skeletal muscle in culture. Proc Natl Acad Sci USA 74: 5166-5170, 1977 
  14. Wakelam MJ. The fusion of myoblasts. Biochem J 228: 1-12, 1985 
  15. Liu JH, Dijlenga P, Fisher-Louheed J, Occhiodoro T, Kaelin A, Bader CR, Bernheim L. Role of an inward rectifier $K^{+}$ current and of hyperpolarization in human myoblast fusion. J Physiol 510: 467-476, 1998 
  16. Shin KS, Park JY, Kwon H, Chung CH, Kang MS. A possible role of inwardly rectifying $K^{+}$ channels in chick myoblast differentiation. Am J Physiol 272: C894-C900, 1997 
  17. Penner R, Matthews G, Neher E. Regulation of $Ca^{2+}$ influx by second messengers in rat mast cells. Nature 334: 499-504, 1998 
  18. Romey G, Garcia L, Dimitriadou V, Dincon-Raymond M, Rieger F, Lazdunski M. Ontogenesis and localization of $Ca^{2+}$ channels in mammalian skeletal muscle in culture and role in excitationcontraction coupling. Proc Natl Acad Sci USA 86: 2933-2937, 1989 
  19. Miledi R, Parker I. Blocking of acetylcholine-induced channels by extracellular or intracellular application of D600. Proc R Soc Lond B Biol Sci 211: 143-150, 1980 
  20. Arias HR. Binding sites for exogenous non-competitive inhibitors of the nicotinic acetylcholine receptor. Biochim Biophys Acta 1376: 173-220, 1998 
  21. Cognard C, Constantin B, Rivet-Bastide M, Raymond G. Intracellular $Ca^{2+}$ transients induced by different kinds of stimulus during myogenesis of rat skeletal muscle cells studied by laser cytofluorimetry with Indo-1. Cell Calcium 14: 333-348, 1993 
  22. Bernheim L, Bader CR. Human myoblast differentiation: $Ca^{2+}$ channels are activated by $K^{+}$ channels. News Physiol Sci 17: 22-26, 2002 
  23. Randall D, Burggren W, French K. Eckert animal physiology: mechanisms and adaptations. 5th ed. W. H. Freeman and Company, New York, NY, p 361-420, 1992 
  24. David JD, See WM, Higginbotham CA. Fusion of chick embryo skeletal myoblasts: role of $Ca^{2+}$ influx preceding membrane union. Dev Biol 82: 297-307, 1981 
  25. Hamill OP, Marty A, Nehr E, Sakmann B, Sigworth FJ. Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch 391: 85-100, 1981 
  26. Tsien RW, Tsien RY. $Ca^{2+}$ channels, stores, and oscillations. Annu Rev Cell Biol 6: 715-760, 1990 
  27. Marty A. $Ca^{2+}$-dependent $K^{+}$ channels with large unitary conductance in chromaffin cell membranes. Nature 291: 497-500, 1981 
  28. Meldolesi J, Pozzan T. Pathways of $Ca^{2+}$ influx at the plasma membrane: voltage-, receptor-, and second messenger-operated channels. Exp Cell Res 171: 271-283, 1987 
  29. Caffrey JM, Brown AM, Schneider MD. Mitogens and oncogenes can block the induction of specific voltage-gated ion channels. Science 236: 570-573, 1987 
  30. Entwistle A, Zalin RJ, Bevan S, Warner AE. The control of chick myoblast fusion by ion channels operated by prostaglandins and acetylcholine. J Cell Biol 106: 1693-1702, 1988 
  31. Oettgen HC, Terhorst C, Cantley LC, Rosoff PM. Stimulation of the T3-T cell receptor complex induces a membrane-potentialsensitive $Ca^{2+}$ influx. Cell 40: 583-590, 1985 
  32. Nathanson NM. Molecular properties of the muscarinic acetylcholine receptor. Annu Rev Neurosci 10: 195-236, 1987 
  33. Shainberg A, Yagil G, Yaffe D. Control of myogenesis in vitro by $Ca^{2+}$ concentrations in nutritional medium. Exp Cell Res 58: 163- 167, 1971 
  34. Rich A, Rae JL. $Ca^{2+}$ entry in rabbit corneal epithelial cells: evidence for a non-voltage dependent pathway. J Membr Biol 144: 177-184, 1995 
  35. O'Neill MC, Stockdale FE. A kinetic analysis of myogenesis in vitro. J Cell Biol 52: 52-65, 1972 
  36. Hamann M, Chamoin MC, Portalier P, Bernheim L, Baroffio A, Widmer H, Bader CR, Ternaux JP. Synthesis and release of an acetylcholine-like compound by human myoblasts and myotubes. J Physiol (Lond) 489: 791-803, 1995 
  37. Schmid A, Renaud JF, Fosset M, Meaux JP, Lazdunski M. The nifedifine-sensitive $Ca^{2+}$ channel in chick muscle cells and its appearance during myogenesis in vitro and in vivo. J Biol Chem 259: 11366-11372, 1984 
  38. Shin KS, Park JY, Ha DB, Chung CH, Kang MS. Involvement of $K_{Ca}$ channels and stretch-activated channels in $Ca^{2+}$ influx triggering membrane fusion of chick embryonic myoblasts. Dev Biol 175: 14-23, 1996 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일