$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Our previous report demonstrated that chick myoblasts are equipped with $Ca^{2+}$-permeable stretchactivated channels and $Ca^{2+}-activated$ potassium channels ($K_{Ca}$), and that hyperpolarization-induced by $K_{Ca}$ channels provides driving force for ...

주제어

참고문헌 (38)

  1. Arias HR. Binding sites for exogenous non-competitive inhibitors of the nicotinic acetylcholine receptor. Biochim Biophys Acta 1376: 173-220, 1998 

  2. Bernheim L, Bader CR. Human myoblast differentiation: $Ca^{2+}$ channels are activated by $K^{+}$ channels. News Physiol Sci 17: 22-26, 2002 

  3. Caffrey JM, Brown AM, Schneider MD. Mitogens and oncogenes can block the induction of specific voltage-gated ion channels. Science 236: 570-573, 1987 

  4. Cognard C, Constantin B, Rivet-Bastide M, Raymond G. Intracellular $Ca^{2+}$ transients induced by different kinds of stimulus during myogenesis of rat skeletal muscle cells studied by laser cytofluorimetry with Indo-1. Cell Calcium 14: 333-348, 1993 

  5. Constantin B, Cognard C, Raymond G. Myoblast fusion requires cytosolic $Ca^{2+}$ elevation but not activation of voltage-dependent $Ca^{2+}$ channels. Cell Calcium 19: 365-374, 1996 

  6. Cossu G, Eusebi F, Grassi F, Wanke E. Acetylcholine receptor channels are present in undifferentiated satellite cells but not in embryonic myoblasts in culture. Dev Biol 123: 43-50, 1987 

  7. David JD, See WM, Higginbotham CA. Fusion of chick embryo skeletal myoblasts: role of $Ca^{2+}$ influx preceding membrane union. Dev Biol 82: 297-307, 1981 

  8. Easton TG, Reich E. Muscle differentiation in cell culture. Effects of nucleoside inhibitors and Rous sarcoma virus. J Biol Chem 247: 6420-6431, 1972 

  9. Entwistle A, Zalin RJ, Bevan S, Warner AE. The control of chick myoblast fusion by ion channels operated by prostaglandins and acetylcholine. J Cell Biol 106: 1693-1702, 1988 

  10. Entwistle A, Zalin RJ, Warner AE, Bevan S. A role for acetylcholine receptors in the fusion of chick myoblasts. J Cell Biol 106: 1703- 1712, 1988 

  11. Fischbach GD, Nameroff M, Nelson PG. Electrical properties of chick skeletal muscle fibers developing in cell culture. J Cell Physiol 78: 289-300, 1971 

  12. Hamann M, Chamoin MC, Portalier P, Bernheim L, Baroffio A, Widmer H, Bader CR, Ternaux JP. Synthesis and release of an acetylcholine-like compound by human myoblasts and myotubes. J Physiol (Lond) 489: 791-803, 1995 

  13. Hamill OP, Marty A, Nehr E, Sakmann B, Sigworth FJ. Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch 391: 85-100, 1981 

  14. Hille B. Ligand-gated channels of fast chemical synapses. In: Hille B ed, Ionic channels of excitable cell membranes. 3rd ed. Sinauer Associates Inc., Massachusetts, p 169-199, 1992 

  15. Krause RM, Hamann M, Bader CR, Liu JH, Baroffio A, Bernheim L. Activation of nicotinic acetylcholine receptors increases the rate of fusion of cultured human myoblasts. J Physiol (Lond) 489: 779-790, 1995 

  16. Latorre R, Oberhauser A, Labarca P, Alvarez O. Varieties of $Ca^{2+}$ -activated potassium channels. Annu Rev Physiol 51: 385-399, 1989 

  17. Liu JH, Dijlenga P, Fisher-Louheed J, Occhiodoro T, Kaelin A, Bader CR, Bernheim L. Role of an inward rectifier $K^{+}$ current and of hyperpolarization in human myoblast fusion. J Physiol 510: 467-476, 1998 

  18. Marty A. $Ca^{2+}$ -dependent $K^{+}$ channels with large unitary conductance in chromaffin cell membranes. Nature 291: 497-500, 1981 

  19. McDonald TF, Pelzer S, Trautwein W, Pelzer DJ. Regulation and modulation of $Ca^{2+}$ channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74: 365-507, 1994 

  20. Meldolesi J, Pozzan T. Pathways of $Ca^{2+}$ influx at the plasma membrane: voltage-, receptor-, and second messenger-operated channels. Exp Cell Res 171: 271-283, 1987 

  21. Miledi R, Parker I. Blocking of acetylcholine-induced channels by extracellular or intracellular application of D600. Proc R Soc Lond B Biol Sci 211: 143-150, 1980 

  22. Nathanson NM. Molecular properties of the muscarinic acetylcholine receptor. Annu Rev Neurosci 10: 195-236, 1987 

  23. O'Neill MC, Stockdale FE. A kinetic analysis of myogenesis in vitro. J Cell Biol 52: 52-65, 1972 

  24. Oettgen HC, Terhorst C, Cantley LC, Rosoff PM. Stimulation of the T3-T cell receptor complex induces a membrane-potentialsensitive $Ca^{2+}$ influx. Cell 40: 583-590, 1985 

  25. Park JY, Shin KS, Kwon H, Rhee JG, Kang MS, Chung CH. Role of hyperpolarization attained by linoleic acid in chick myoblast fusion. Exp Cell Res 251: 307-317, 1999 

  26. Park JY, Lee D, Maeng JU, Koh DS, Kim K. Hyperpolarization, but not depolarization, increases intracellular $Ca^{2+}$ level in cultured chick myoblasts. Biochem Biophys Res Commun 290: 1176-1182, 2002 

  27. Penner R, Matthews G, Neher E. Regulation of $Ca^{2+}$ influx by second messengers in rat mast cells. Nature 334: 499-504, 1998 

  28. Randall D, Burggren W, French K. Eckert animal physiology: mechanisms and adaptations. 5th ed. W. H. Freeman and Company, New York, NY, p 361-420, 1992 

  29. Rich A, Rae JL. $Ca^{2+}$ entry in rabbit corneal epithelial cells: evidence for a non-voltage dependent pathway. J Membr Biol 144: 177-184, 1995 

  30. Romey G, Garcia L, Dimitriadou V, Dincon-Raymond M, Rieger F, Lazdunski M. Ontogenesis and localization of $Ca^{2+}$ channels in mammalian skeletal muscle in culture and role in excitationcontraction coupling. Proc Natl Acad Sci USA 86: 2933-2937, 1989 

  31. Schmid A, Renaud JF, Fosset M, Meaux JP, Lazdunski M. The nifedifine-sensitive $Ca^{2+}$ channel in chick muscle cells and its appearance during myogenesis in vitro and in vivo. J Biol Chem 259: 11366-11372, 1984 

  32. Shainberg A, Yagil G, Yaffe D. Control of myogenesis in vitro by $Ca^{2+}$ concentrations in nutritional medium. Exp Cell Res 58: 163- 167, 1971 

  33. Shin KS, Park JY, Ha DB, Chung CH, Kang MS. Involvement of $K_{Ca}$ channels and stretch-activated channels in $Ca^{2+}$ influx triggering membrane fusion of chick embryonic myoblasts. Dev Biol 175: 14-23, 1996 

  34. Shin KS, Park JY, Kwon H, Chung CH, Kang MS. A possible role of inwardly rectifying $K^{+}$ channels in chick myoblast differentiation. Am J Physiol 272: C894-C900, 1997 

  35. Siegelbaum SA, Trautmann A, Koenig J. Single acetylcholine activated channel currents in developing muscle cells. Dev Biol 104: 366-379, 1984 

  36. Spector I, Prives JM. Development of electrophysiological and biochemical membrane properties during differentiation of embryonic skeletal muscle in culture. Proc Natl Acad Sci USA 74: 5166-5170, 1977 

  37. Tsien RW, Tsien RY. $Ca^{2+}$ channels, stores, and oscillations. Annu Rev Cell Biol 6: 715-760, 1990 

  38. Wakelam MJ. The fusion of myoblasts. Biochem J 228: 1-12, 1985 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로