• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


In the heart, $Na^{+}-Ca^{2+}$ exchange (NCX) is the major $Ca^{2+}$ extrusion mechanism. NCX has been considered as a relaxation mechanism, as it reduces global $[Ca^{2+}]_i$ raised during activation. However, if NCX locates in the close proximity to the ryanodine receptor, then NCX would curtail $Ca^{2+}$ before its diffusion to global $Ca^{2+}_i$ This will result in a global $[Ca^{2+}]_i$ decrease especially during its ascending phase rather than descending phase. Therefore, NCX would decrease the myocardial contractility rather than inducing relaxation in the heart. This possibility was examined in this study by comparing NCX-induced extrusion of $Ca^{2+}$ after its release from SR in the presence and absence of global $Ca^{2+}_i$ transient in the isolated single rat ventricular myocytes by using patch-clamp technique in a whole-cell configuration. Global $Ca^{2+}_i$ transient was controlled by an internal dialysis with different concentrations of BAPTA added in the pipette. During stimulation with a ramp pulse from +100 mV to -100 mV for 200 ms, global $Ca^{2+}_i$ transient was suppressed only mildly, and completely at 1 mmol/L, and 10 mmol/L BAPTA, respectively. In these situations, ryanodine-sensitive inward NCX current was compared using $100{\mu}mol/L$ ryanodine, $Na^+$ depletion, 5 mmol/L $NaCl_2$ and $1{\mu}mol/L$ nifedipine. Surprisingly, the result showed that the ryanodine-sensitive inward NCX current was well preserved after 10 mmol/L BAPTA to 91 % of that obtained after 1 mmol/L BAPTA. From this result, it is concluded that most of the NCX-induced $Ca^{2+}$ extrusion occurs before the $Ca^{2+}$ diffuses to global $Ca^{2+})i$ in the rat ventricular myocyte.

저자의 다른 논문

참고문헌 (34)

  1. Frank JS, Chen F, Garfinkel A, Moore E, Philipson KD. Immunolocalization of the Na(+)-Ca2+ exchanger in cardiac myocytes. Ann N Y Acad Sci 779: 532-533, 1996 
  2. Frank JS, Mottino G, Reid D, Molday RS, Philipson KD. Distribution of the Na(+)-Ca2+ exchange protein in mammalian cardiac myocytes: an immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol 117: 337-345, 1992 
  3. Langer GA, Peskoff A. Calcium in the cardiac diadic cleft. Implications for sodium-calcium exchange. Ann N Y Acad Sci 779: 408-416, 1996 
  4. Langer GA, Wang SY, Rich TL. Localization of the Na/Ca exchangedependent Ca compartment in cultured neonatal rat heart cells. Am J Physiol 268: 119-126, 1995 
  5. Scriven DR, Dan P, Moore ED. Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys J 79: 2682-2691, 2000 
  6. Scriven DR, Klimek A, Lee KL, Moore ED. The molecular architecture of calcium microdomains in rat cardiomyocytes. Ann N Y Acad Sci 976: 488-499, 2002 
  7. Sham JS. Ca2+ release-induced inactivation of Ca2+ current in rat ventricular myocytes: evidence for local Ca2+ signalling. J Physiol 500: 285-295, 1997 
  8. Yang Z, Pascarel C, Steele DS, Komukai K, Brette F, Orchard CH. Na+-Ca2+ exchange activity is localized in the T-tubules of rat ventricular myocytes. Circ Res 91: 315-322, 2002 
  9. Sipido KR, Maes M, Van de Werf F. Low efficiency of Ca2+ entry through the Na(+)-Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum. A comparison between L-type Ca2+ current and reverse-mode Na(+)-Ca2+ exchange. Circ Res 81: 1034-1044, 1997 
  10. Adachi-Akahane S, Lu L, Li Z, Frank JS, Philipson KD, Morad M. Calcium signaling in transgenic mice overexpressing cardiac Na(+)-Ca2+ exchanger. J Gen Physiol 109: 717-729, 1997 
  11. Hobai IA, O'Rourke B. Enhanced Ca(2+)-activated Na(+)-Ca(2+) exchange activity in canine pacing-induced heart failure. Circ Res 87: 690-698, 2000 
  12. Langer GA, Rich TL. A discrete Na-Ca exchange-dependent Ca compartment in rat ventricular cells: exchange and localization. Am J Physiol 262: 1149-1153, 1992 
  13. Carmeliet E. A fuzzy subsarcolemmal space for intracellular Na+ in cardiac cells? Cardiovasc Res 26: 433-442, 1992 
  14. Adachi-Akahane S, Cleemann L, Morad M. Cross-signaling between L-type Ca2+ channels and ryanodine receptors in rat ventricular myocytes. J Gen Physiol 108: 435-54, 1996 
  15. Argibay JA, Fischmeister R, Hartzell HC. Inactivation, reactivation and pacing dependence of calcium current in frog cardiocytes: correlation with current density. J Physiol 401: 201-226, 1988 
  16. Sun H, Leblanc N, Nattel S. Mechanisms of inactivation of L-type calcium channels in human atrial myocytes. Am J Physiol 272: H1625-1635, 1997 
  17. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem 56: 395-433, 1987 
  18. Mitra R, Morad M. A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates. Am J Physiol 249: 1056-1060, 1985 
  19. Trafford AW, Diaz ME, O'Neill SC, Eisner DA. Comparison of subsarcolemmal and bulk calcium concentration during spontaneous calcium release in rat ventricular myocytes. J Physiol 488: 577-586, 1995 
  20. Thomas MJ, Sjaastad I, Andersen K, Helm PJ, Wasserstrom JA, Sejersted OM, Ottersen OP. Localization and function of the Na+/Ca2+-exchanger in normal and detubulated rat cardiomyocytes. J Mol Cell Cardiol 35: 1325-1337, 2003 
  21. Chen F, Mottino G, Klitzner TS, Philipson KD, Frank JS. Distribution of the Na+/Ca2+ exchange protein in developing rabbit myocytes. Am J Physiol 268: C1126-C1132, 1995 
  22. Convery MK, Hancox JC. Comparison of Na+-Ca2+ exchange current elicited from isolated rabbit ventricular myocytes by voltage ramp and step protocols. Pflugers Arch 437: 944-954, 1999 
  23. Lederer WJ, Niggli E, Hadley RW. Sodium-calcium exchange in excitable cells: fuzzy space. Science 248: 283, 1990 
  24. Reuter H, Han T, Motter C, Philipson KD, Goldhaber JI. Mice overexpressing the cardiac sodium-calcium exchanger: defects in excitation-contraction coupling. J Physiol 554: 779-789, 2004 
  25. Wang SY, Peskoff A, Langer GA. Inner sarcolemmal leaflet Ca(2+) binding: its role in cardiac Na/Ca exchange. Biophys J 70: 2266-2274, 1996 
  26. Kieval RS, Bloch RJ, Lindenmayer GE, Ambesi A, Lederer WJ. Immunofluorescence localization of the Na-Ca exchanger in heart cells. Am J Physiol 263: C545-C550, 1992 
  27. Bers DM, Weber CR. Na/Ca exchange function in intact ventricular myocytes. Ann N Y Acad Sci 976: 500-512, 2002 
  28. Leblanc N, Hume JR. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248: 372-376, 1990 
  29. Weber CR, Piacentino V, 3rd, Ginsburg KS, Houser SR, Bers DM. Na(+)-Ca(2+) exchange current and submembrane [Ca(2+)] during the cardiac action potential. Circ Res 90: 182-189, 2002 
  30. Philipson KD, Nicoll DA, Ottolia M, Quednau BD, Reuter H, John S, Qiu Z. The Na+/Ca2+ exchange molecule: an overview. Ann N Y Acad Sci 976: 1-10, 2002 
  31. Hobai IA, Maack C, O'Rourke B. Partial inhibition of sodium/calcium exchange restores cellular calcium handling in canine heart failure. Circ Res 95: 292-299, 2004. 
  32. Bers DM, Bassani JW, Bassani RA. Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle. Ann N Y Acad Sci 779: 430-442, 1996 
  33. Hobai IA, Hancox JC, Levi AJ. Inhibition by nickel of the L-type Ca channel in guinea pig ventricular myocytes and effect of internal cAMP. Am J Physiol Heart Circ Physiol 279: H692-H701, 2000 
  34. Langer GA, Peskoff A. Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell. Biophys J 70: 1169-1182, 1996 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일