$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

The aim of this study was to determine the roles of ET-1 and NO on uterine blood flow in pregnancy. Uterine arteries were isolated from 17 nonpregnant and 12 pregnant women. Nonpregnant group included patients with median age of $48.6{\pm}2.3$ years who underwent hysterectomy, because of myoma. Pregnant group included patients with median age of $31.3{\pm}1.4$ years undergoing cesarean delivery. ET-1 and ET-2 induced concentration-dependent contraction in isolated nonpregnant and pregnant uterine arteries. The contractile response and maximal contraction were increased in pregnant uterine arteries. In nonpregnant uterine arteries, there was no contraction in response to ET-3, whereas pregnancy induced concentration-dependent contraction by ET-3. Tissue nitrite/nitrate level and immunohistochemical staining of eNOS and iNOS were increased in pregnant uterine arteries, compared with nonpregnant uterine arteries. In addition, the expressions of eNOS and iNOS mRNA were significantly increased in pregnancy. Moreover, contractions by ET isopeptides, including ET-1, were enhanced, and immunohistochemical staining of ET-1 and ET-1 mRNA expression was increased in pregnant uterine arteries. These results suggest that NO production by increased NOS activity, especially eNOS activity, is related to placental and uterine blood flow. Furthermore, ET-1 appears to play a pathophysiological role in pregnant complications such as hypertension.

참고문헌 (55)

  1. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348: 730-732, 1990 
  2. Archer S. Measurement of nitric oxide in biological models. FASEB J 7: 349-360, 1993 
  3. Battistini B, O'Donnell LJ, Warner TD, Fournier A, Farthing MJ, Vane JR. Characterization of endothelin (ET) receptors in the isolated gall bladder of the guinea-pig: evidence for an additional ET receptor subtype. Br J Pharmacol 112: 1244-1250, 1994b 
  4. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254, 1976 
  5. Conrad K, Vernier KA. Plasma level, urinary excretion, and metabolic production of cGMP during gestation in rats. Am J Physiol 257: R847-R853, 1989 
  6. King AJ, Brenner BM, Anderson S. Endothelin: a potent renal and systemic vasoconstrictor peptide. Am J Physiol 256: F1051- F1058, 1989 
  7. Lowe DT. Nitric oxide dysfunction in the pathophysiology of preeclampsia. Nitric Oxide 4: 441-458, 2000 
  8. Magness RR, Osei-Boaten K, Mitchell MS, Rosenfeld CR. In vitro prostacyclin production by ovine uterine and systemic arteries. J Clin Invest 76: 2206-2212, 1985 
  9. Magness RR, Shaw CE, Phernetton TM, Zheng J, Bird IM. Endothelial vasodilator production by uterine and systemic arteries. II. Pregnancy effects on NO synthase expression. Am J Physiol 272: H1730-H1740, 1997 
  10. Nelson SH, Suresh MS. Pregnancy: endothelium-dependent cholinergic dilation of human uterine arteries (Abstract D43). In: Proceedings of the annual meeting of the Society of Obstetrical Anesthesiologists and Perinatologists. San Francisco, Society of Obstetrical Anesthesiologists and Perinatologists, 1989 
  11. Pernow J. Actions of constrictor (NPY and endothelin) and dilator (substance P, CGRP and VIP) peptides on pig splenic and human skeletal muscle arteries: involvement of the endothelium. Br J Pharmacol 97: 983-989, 1989 
  12. Reilly RD, Russell PT. Neurohistochemical evidence supporting an absence of adrenergic and cholinergic innervation in the human placenta and umbilical cord. Anat Rec 188: 277-286, 1977 
  13. Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T. Cloning of a cDNA encoding a non-isopeptideselective subtype of the endothelin receptor. Nature 348: 732- 735, 1990 
  14. Warner TD, Allcock GH, Mickley EJ, Vane JR. Characterization of endothelin receptors mediating the effects of the endothelin/ sarafotoxin peptides on autonomic neurotransmission in the rat vas deferens and guinea-pig ileum. Br J Pharmacol 110: 783- 789, 1993 
  15. Weiner CP, Martinez E, Chestnut DH, Ghodsi A. Effect of pregnancy on uterine and carotid artery response to norepinephrine, epinephrine and phenylephrine in vessels with documented functional endothelium. Am J Obstet Gynecol 161: 1605- 1610, 1989a 
  16. Weiner CP, Martinez E, Zhu LK, Ghodsi A, Chestnut D. In vitro release of endothelium-derived relaxing factor by acetylcholine is increased during the guinea pig pregnancy. Am J Obstet Gynecol 161: 1599-1605, 1989b 
  17. Dotsch J, Hogen N, Nyul Z, Hanze J, Knerr I, Kirschbaum M, Rascher W. Increase of endothelial nitric oxide synthase and endothelin-1 mRNA expression in human placenta during gestation. Eur J Obstet Gynecol Reprod Biol 97: 163-167, 2001 
  18. Anumba DO, Robson SC, Boys RJ, Ford GA. Nitric oxide activity in the peripheral vasculature during normotensive and preeclamptic pregnancy. Am J Physiol 277: H848-H854, 1999 
  19. Magness RR, Rosenfeld CR, Hassan A, Shaul PW. Endothelial vasodilator production by uterine and systemic arteries. I. Effects of ANG II on $PGI_{2}$ and NO in pregnancy. Am J Physiol 270: H1914-H1923, 1996 
  20. Nelson SH, Steinsland OS, Suresh MS, Lee NM. Pregnancy augments nitric oxide-dependent dilator response to acetylcholine in the human uterine artery. Hum Reprod 13: 1361- 1367, 1998 
  21. Steele SC, Warren AY, Johnson IR. Effect of the vascular endothelium on norepinephrine-induced contractions in uterine radial arteries from the nonpregnant and pregnant human uterus. Am J Obstet Gynecol 168: 1623-1628, 1993 
  22. Nishikawa S, Miyamoto A, Yamamoto H, Ohshika H, Kudo R. The relationship between serum nitrate and endothelin-1 concentrations in preeclampsia. Life Sci 67: 1447-1454, 2000 
  23. Nova A, Sibai BM, Barton JR, Mercer BM, Mitchell MD. Maternal plasma level of endothelin is increased in preeclampsia. Am J Obstet Gynecol 165: 724-727, 1991 
  24. Moncada S. The 1991 Ulf von Euler Lecture. The L-arginine: nitric oxide pathway. Acta Physiol Scand 145: 201-227, 1992 
  25. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051-3064, 1992 
  26. Nelson SH, Steinsland OS, Johnson RL, Suresh MS, Gifford A, Ehardt JS. Pregnancy-induced alterations of neurogenic constriction and dilation of human uterine artery. Am J Physiol 268: H1694-1701, 1995 
  27. Peeters LL, Grutters G, Martin CB. Distribution of cardiac output in the unstressed pregnant guinea pig. Am J Obstet Gynecol 138: 1177-1184, 1980 
  28. Rosenfeld CR, Naden RP. Uterine and nonuterine vascular responses to angiotensin II in ovine pregnancy. Am J Physiol 257: H17-H24, 1989 
  29. Saida K, Mitsui Y, Ishida N. A novel peptide, vasoactive intestinal constrictor of a new (endothelin) peptide family. J Biol Chem 264: 14613-14616, 1989 
  30. Williams DL, Jones KL, Pettibone DJ, Lis EV, Clineschmidt BV. Sarafotoxin S6c: an agonist which distinguishes between endothelin receptor subtypes. Biophys Biochem Res Commun 175: 556-561, 1991 
  31. Maggi CA, Giuliani S, Patacchini R, Rovero P, Giachetti A, Meli A. The activity of peptides of the endothelin family in various mammalian smooth muscle preparations. Eur J Pharmacol 174: 23-31, 1989 
  32. Schiff E, Ben-Baruch G, Peleg E, Goldenberg M, Rosenthal T, Alcalay M, Devir M, Mashiach S. Immunoreactive circulating endothelin-1 in normal and hypertensive pregnancies. Am J Obstet Gynecol 166: 624-628, 1992 
  33. Lippton H, Goff J, Hyman A. Effects of endothelin in the systemic and vascular beds in vivo. Eur J Pharmacol 155: 440-444, 1988 
  34. McLaughlin MK, Keve TM, Cooke R. Vascular catecholamine sensitivity during pregnancy in the ewe. Am J Obstet Gynecol 160: 47-53, 1989 
  35. Napolitano M, Miceli F, Calce A, Vacca A, Gulino A, Apa R, Lanzone A. Expression and relationship between endothelin-1 messenger ribonucleic acid (mRNA) and inducible/endothelial nitric oxide synthase mRNA isoforms from normal and preeclamptic placentas. J Clin Endocrinol Metab 85: 2318-2323, 2000 
  36. Iwata I, Takagi T, Yamaji K, Tanizawa O. Increase in the concentration of immunoreactive endothelin in human pregnancy. J Endocrinol 129: 301-307, 1991 
  37. Myatt L, Brewer AS, Brockman DE. The comparative effects of big endothelin-1, endothelin-1, and endothelin-3 in the human fetal-placental circulation. Am J Obstet Gynecol 167: 1651- 1656, 1992 
  38. Taylor RN, Varma M, Teng NN, Roberts JM. Women with preeclampsia have higher plasma endothelin levels than women with normal pregnancies. J Clin Endocrinol Metab 71: 1675- 1677, 1990 
  39. Battistini B, Warner TD, Fournier A, Vane JR. Characterization of ETB receptors mediating contractions induced by endothelin-1 or IRL 1620 in guinea-pig isolated airways: Effects of BQ-123, FR139327 or PD145065. Br J Pharmacol 111: 1009-1016, 1994a 
  40. Inoue A, Yanagisawa M, Kimura S, Yoshitoshi K, Miyauchi T, Goto K, Masaki T. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 86: 2863-2867, 1989 
  41. Poston L, McCarthy AL, Ritter JM. Control of vascular resistance in the maternal and feto-placental arterial beds. Pharmacol Ther 65: 215-239, 1995 
  42. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411-415, 1988 
  43. Magness RR. Endothelium-derived vasoactive substances and uterine blood vessels. Semin Perinatol 15: 68-78, 1991 
  44. Marletta MA. Nitric oxide biosynthesis and biological significance. Trends Biol Sci 14: 488-492, 1989 
  45. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [$^{15}N$]nitrate in biological fluids. Anal Biochem 126: 131-138, 1982 
  46. Conrad K, Vill M, McGuire PG, Dail WG, Davis AK. Expression of nitric oxide synthase by syncytiotrophoblast in human placental villi. FASEB J 7: 1269-1276, 1993 
  47. Fried G, Samuelson U. Endothelin and neuropeptide Y are vasoconstrictors in human uterine blood vessels. Am J Obstet Gynecol 164: 1330-1336, 1991 
  48. Griendling KK, Fuller EO, Cox RH. Pregnancy-induced changes in sheep uterine and carotid arteries. Am J Physiol 248: H658- H665, 1985 
  49. Nelson SH, Steinsland OS, Wang Y, Yallampalli C, Dong YL, Sanchez JM. Increased nitric oxide synthase activity and expression in the human uterine artery during pregnancy. Circ Res 87: 406-411, 2000 
  50. Weiner CP, Kang-Zhu L, Thompson LP, Herrig J, Chestnut DH. Effect of pregnancy on endothelium and smooth muscle: their role in reduced adrenergic sensitivity. Am J Physiol 261: H1275- H1283, 1991 
  51. Franco-Cereceda A. Endothelin- and neuropeptide Y-induced vasoconstriction of human epicardial coronary arteries in vitro. Br J Pharmacol 97: 968-972, 1989 
  52. Lees MM, Taylor SH, Scott DB, Kerr MG. A study of cardiac output at rest throughout pregnancy. J Obstet Gynaecol Br Commonw 74: 319-328, 1967 
  53. Li P, Tong C, Eisenach JC. Pregnancy and ephedrine increase the release of nitric oxide in ovine uterine arteries. Anesth Analg 82: 288-293, 1996 
  54. Lowenstein CJ, Snyder SH. Nitric oxide: a novel biologic messenger. Cell 70: 705-707, 1992 
  55. Usuki S, Saitoh T, Sawamura T, Suzuki N, Shigemitsu S, Yanagisawa M, Goto K, Onda H, Fujino M, Masaki T. Increased maternal plasma concentration of endothelin-1 during labor pain or on delivery and the existence of a large amount of endothelin- 1 in amniotic fluid. Gynecol Endocrinol 4: 85-97, 1990 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일