• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


The purpose of this study was to discern the critical point in skeletal muscle fatty acid oxidation by changing plasma free fatty acids (FFA) level in rat. In the study, 3 key steps in lipid oxidation were examined after changing plasma FFA level by acipimox. The rates of both palmitate and palmitoylcarnitine oxidation were decreased by decrease of plasma FFA level, however, carnitine palmitoyl transferase (CPT) 1 activity was not changed, suggesting CPT1 activity may not be involved in the fatty acid oxidation at the early phase of plasma FFA change. In the fasted rats, ${\beta}-hydroxy$ acyl-CoA dehydrogenase (${\beta}$-HAD) activity was depressed to a similar extent as palmitate oxidation by a decrease of plasma FFA level. This suggested that ${\beta}-oxidation$ might be an important process to regulate fatty acid oxidation at the early period of plasma FFA change. Citrate synthase activity was not altered by the change of plasma FFA level. In conclusion, the critical step in fatty acids oxidation of skeletal muscles by the change of plasma FFA level by acipimox in fasting rats might be the ${\beta}-oxidation$ step rather than CPT1 and TCA cycle pathways.

참고문헌 (18)

  1. Bulow J. Lipid mobilization and utilization. Principles of Exercise Biochemistry. 1st ed. Basel, Karger, p 140-163, 1988 
  2. Dagenais GR, Tancredi RG, Zierlier KL. Free fatty acid oxidation by forearm muscle at rest, and evidence for an intramuscular lipid pool in human forearm. J Clin Invest 58: 421-431, 1976 
  3. Gollnick PD, Saltin B. Significance of skeletal muscle oxidative enzyme enhancement with endurance training: hypothesis. Clin Physiol 2: 1-12, 1982 
  4. Howald H, Hoppeler H, Claasen H, Mathieu O, Straub R. Influence of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pfluegers Arch 403: 369- 376, 1985 
  5. Kim JY, Hickner RC, Dohm GL, Houmard JA. Long- and medium-chain fatty acid oxidation is increased in exercisetrained human skeletal muscle. Metabolism 51: 460-464, 2002a 
  6. McGarry JD, Brown NF. The mitochndrial carnitine palmitoyltransferase system from concept to molecular analysis. Eur J Biochem 244: 1-14, 1997 
  7. Watt MJ, Holmes AG, Steinberg GR, Mesa JL, Kemp BE, Febbraio MA. Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle. Am J Physiol Endocrinol Metab 287: E120- E127, 2004 
  8. Piatti PM, Monti LD, Davis SN, Conti M, Brown MD, Pozza G, Alberti KG. Effects of an acute decrease in non-esterified fatty acid levels on muscle glucose utilization and forearm indirect calorimetry in lean NIDDM patients. Diabetologia 39: 103-112, 1996 
  9. Kim JY, Koves TR, Yu GS, Gulick T, Cortright RN, Dohm GL, Muoio DM. Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle. Am J Physiol Endocrinol Metab 282: E1014-E1022, 2002b 
  10. Van der Vusse GJ, Reneman RS. Lipid metabolism in muscle. In: Rowell LB, Shepherd JT ed, Handbook of Physiology. 1st ed. Oxford University Press, New York, p 952-994, 1996 
  11. Zierz S, Engel AG. Different sites of inhibition of carnitine palmitoyltransferase by malonyl-CoA, and by acetyl-CoA and CoA, in human skeletal muscle. Biochem J 245: 205-209, 1987 
  12. Scholte HR, Yu Y, Ross JD, Oosterkamp II, Boonman AM, Busch HF. Rapid isolation of muscle and heart mitochondria, the lability of oxidative phosphorylation and attempts to stabilize the process in vitro by taurine, carnitine and other compounds. Mol Cell Biochem 174: 61-66, 1997 
  13. Srele PA. Citrate synthase. Meth Enzymol 13: 3-26, 1969 
  14. Donati A, Cavallini G, Carresi C, Gori Z, Parentini I, Bergamini E. Anti-aging effects of anti-lipolytic drugs. Exp Gerontol 39: 1061-1067, 2004 
  15. McGarry JD, Mills SE, Long CS, Foster DW. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J 214: 21-28, 1983 
  16. Tornvall P, Walldius GW. A comparison between nicotinic acid and acipimox in hypertriglyceridaemia--effects on serum lipids, lipoproteins, glucose tolerance and tolerability. J Intern Med 230: 415-421, 1991 
  17. Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 279: E1039-E1044, 2000 
  18. Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 14: 263-283, 1998 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일