$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

광양만 예비 영양류 모형

A Preliminary Trophic Flow Model for Gwangyang Bay, Korea

Abstract

A preliminary quantitative model of the trophic structure in Gwangyang bay, Korea was obtained using ECOPATH and data from relevant studies to date in the region. The model integrates and analyzes biomass, food spectrum, trophic interactions and the key trophic pathways of the system. The bay model comprises 9 groups of benthic primary producer, phytoplankton, zooplankton, benthos, bivalve, pelagic fish, demersal fish and piscivorous fish. The total system throughput was estimated at $2.4\;kgWW/m^2/yr$, including a consumption of $41\%$, exports of $9\%$, respiratory flows of $24\%$ and flows into detritus of $26\%$. All of which originate from primary producers measured at $52\%$ and detritus of $48\%$. The total biomass was seen to be high compared to the levels of Somme, Delaware, Chesapeake Bays and Seine Estuary. This seems to be possibly due to artificial bivalve aquaculture and overestimation of benthos and benthic primary producer groups. The deviation can be calibrated by neglecting aquaculture and decreasing the habitat area for the groups. The trophic network of the bay shows a low level of recycling and organization as indicated by Finn's cycling index $3.3\%$, Ascendancy $3.1\;kgC/m^2/yr$ bits, Capacity $5.1\;kgC/m^2/yr$ bits and Redundancy $2.2\;kgC/m^2/yr$ bits. A high relative ascendancy of $62\%$ and a low internal relative ascendancy of $18\%$ indicate the system is not fully organized and stable towards disturbances, depending upon external connections. Although the model should be continuously provided with field data and calibrated further in depth, this study is the first trophic model applied to the region. The model can be a useful tool to understand the ecosystem in a quantitative manner.

저자의 다른 논문

참고문헌 (65)

  1. Allen, R.R. 1971. Relation between production and biomass. J. Fish. Res. Bd. Can., 28, 1573-1581 
  2. Arias-Gonzalez, J.E., B. Delesalle, B. Salvat and R.. Galzin. 1997. Trophic functioning of the Tiahura reef sector, Moorea Island, French Polynesia. Coral Reefs, 16, 231-246 
  3. Baeck, G.W. and S.H. Huh. 2002. Feeding habits of tongue fish, Cynoglossus joyneri collected in the coastal waters off Yous, Korea. Kor. J. Ichthyol., 14, 234-239 
  4. Baeck, G.W. and S.H. Huh. 2004. Feeding habits of robust tonguefish, Cynoglossus robustus collected in the coastal waters of Yosu, Korea. Kor. J. Ichthyol., 16, 341-347 
  5. Barnes, R.S.F. and R.N. Hughes. 1988. An Introduction to Marine Ecology. Blackwell Scientific Publications, Oxford, pp. 270 
  6. Cha, S.S. and K.J. Park. 1994. Distribution of the ichthyoplankton in Kwangyang Bay. Kor. J. Ichthyol., 6, 60-70 
  7. Cha, S.S. and K.J. Park. 1997. Seasonal changes in species composition of fishes collected with a bottom trawl in Kwangyang Bay, Korea. Kor. J. Ichthyol, 9, 235-243 
  8. Chavez, E.A., M. Gardunno and F. Arreguin-Sanchez. 1993. Trophic dynamic structure of Celestun Lagoon, Southern Gulf of Mexico. In: Trophic Models of Aquatic Ecosystems, ICLARM Conf. Proc., Christensen, V. and D. Pauly, eds., pp. 186-192 
  9. Cho, K.A., I.S. Wui, and C.I. Choi. 1994. Ecological study of phytoplankton in the Kwang-Yang Bay. Kor. J. Environ. Biol., 12, 137-150 
  10. Choi, J.W., S. Hyun and M. Chang. 2003. The summer benthic environmental conditions assessed by the functional groups of macrobenthic fauna in Gwangyang Bay, southern coast of Korea. Kor. J. Environ. Biol., 21, 101-113 
  11. Christensen, V. and D. Pauly. 1992. Ecopath II - a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol. Mod., 61, 169-185 
  12. Christensen, V. and D. Pauly. 1993. On steady-state modelling of ecosystems. In: Trophic Models of Aquatic Ecosystems, ICLARM Conf. Proc., Christensen, V. and D. Pauly, eds., pp. 14-19 
  13. Christensen, V. 1995. Ecosystem maturity-towards quantification. Ecol. Mod., 77, 3-32 
  14. Finn, J.T. 1980. Flow analysis of models of the Hubbard Brook ecosystem. Ecology, 61, 562-571 
  15. Froese, R. and C. Binohlan. 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J. Fish Biol., 56, 758-773 
  16. Froese, R., D. Pauly and Editors. 2003. FishBase. World Wide Web Electronic Publication. www.fishbase.org., version 30, October 2003 
  17. Gonzalez-Liboy, J.A. 1979. An examination of the present condition of seagrass in La Parguera, Puerto Rico. Final report, Dep. Nat. Res. USFWS, Atlanta, GA., pp. 87 
  18. Heymann, J.J. and D. Baird. 2000. Network analysis of the northern Benguela ecosystem by means of NETWRK and ECOPATH. Eco. Mod., 131, 97-119 
  19. Huh, S.H. and G.W. Baeck. 2000. Feeding habits of blotched eelpout, Zoarces gilli collected in the coastal water off Gadeok-do, Korea. Kor. J. Ichthyol., 12, 54-61 
  20. Huh, S.H. and S.N. Kwaka. 1997. Feeding habits of Pholis nebulosa. Kor. J. Ichthyol., 9, 22-29 
  21. Huh, S.H. and S.N. Kwakb. 1997. Feeding habits of Leiognathus nuchalis in the eelgrass (Zostera marina) bed in Kwangyang Bay. Kor. J. Ichthyol., 9, 221-227 
  22. Huh, S.H. and S.N. Kwak. 1998. Feeding habits of juvenile Takifu nipholes in eelgrass (Zostera marina) bed in Kwangyang Bay. J. Kor. Fish. Soc., 31, 806- 812 
  23. Huh, S.H. and S.N. Kwak. 1999. Feeding habits of Juvenile Acanthosgobius flavimanus in the eelgrass (Zostera marina) bed in Kwangyang Bay. J. Kor. Fish. Soc., 32, 10-17 
  24. Hyun, S., W.H. Paeng and T. Lee. 2004. Characteristics of surficial sediment and benthic environments based on geochemical data in Gwangyang Bay, Korea, Kor. J. Environ. Biol., 22, 93-102 
  25. Kang, H.W. and K.W. Lee. 1996. Trace metal concentrations and sedimentation rates of Kwangyang, Masan and Ulsan Bay sediments. J. Kor. Soc. Wat. Qual., 12, 455-461 
  26. Kido, K. 1988. Phylogeny of the family Liparididae, with the taxonomy of the species found around Japan. Mem. Fac. Fish. Hokkaido Univ., 35,. 125-256 
  27. Kwak, S.N. and S.H. Huh. 2002. Feeding habits of Platycephalus indicus in eelgrass (Zostera marina) beds in Kwangyang Bay. Kor. J. Ichthyol., 14, 29-35 
  28. Kwak, S.N. and S.H. Huh. 2003. Feeding habit of Limanda yokohamae in the eelgrass (Zostera marina) bed in Kwangyang Bay. J. Kor. Fish Soc., 36, 522-527 
  29. Kwon, K.Y, C.H. Moon, C.K. Kang and Y.N. Kim. 2002. Distribution of particulate organic matters along the salinity gradients in the Seomjin River estuary. J. Kor. Fish. Soc., 35, 86-96 
  30. Larkin, P.A. and W. Gazey. 1982. Application of ecological simulation models to management of tropical multispecies of fisheries. In: Theory and Management of Tropical Fisheries, ICLARM Conf. Proc., D. Pauly and G.I. Murphy, eds., pp. 123-140 
  31. Lee, G.Y, J.Y Hwang, K.K. Jung and J.M. Choi. 1996. Sedimentary environment change in Kwangyang Bay and Y osu Sound-based on sediment characteristics and clay minerals. J. Kor. Earth Sci. Soc., 17,407-416 
  32. Lee, Y.S., J.S. Lee, R.H. Jung, S.S. Kim, W.J. Go, K.Y. Kim and J. Park. 2001. Limiting nutrient on phytoplankton growth in Gwangyang Bay. J. Kor. Soc. Ocenanol., 6, 201-210 
  33. Lee, T.W., H.T. Moon and S.S. Choi. 1997. Changes in species composition of fish in Chonsu Bay (II) surf zone fish. Kor. J. Ichthyol., 9,79-90 
  34. Lee, Y.S., J. Yu, K.E. Kwon, Y.K. Choi and E.S. Cho. 2004. Temporal and spatial variations of limiting nutrient on phytoplankton growth in the Gwangyang Bay, Korea. J. Kor. Soc. Environ. Eng., 26, 890-895 
  35. Li, S. and H. Wang. 1995. Fauna Sinica. Osteichthyes. Pleuronectiformes. Science Press, Beijing, China., pp. 433 
  36. MacDonald, J.S. and R.H. Green. 1983. Redundancy of variables used to describe importance of prey species in fish diets. Can. J. Fish. Aquat. Sci., 40, 635-637 
  37. Masuda, H., K. Amaoka, C. Araga, T. Uyeno and T. Yoshino. 1984. The fishes of the Japanese Archipelago. 1. Tokai Univ. Press, Tokyo, Japan, pp. 437 
  38. MCT (Ministry of Construction and Transportation, Korea). 1989. Integrated Maintenance Plan for Seomjin River System, pp. 337 
  39. Monaco, M.E. and R.E. Ulanowicz. 1997. Comparative ecosystem trophic structure of three U.S. mid-Atlantic estuaries. Mar. Bio. Prog. Ser., 161, 239-254 
  40. NORI (National Oceanographic Research Institute, Korea). 2005. Marine Chart No. 256, Gwang Yang Man and Yeoja Man 
  41. Oh, S.H. 2003. Species composition and community structure of fishes in Kwangyang Bay, Korea. Ph.D. Thesis, Yosu Natl. Univ., Yeosu, Korea, pp. 220 
  42. Palomares, M.L.D. and D. Pauly. 1999. Predicting the food consumption of fish populationsas functions of mortality, food type, morphometrics, temperature and salinity. Mar. Freshwat. Res., 49, 447-453 
  43. Park, K.J. and S.S. Chao 1995. Food organisms of postlarvae of Japanese anchovy (Engraulis japonica) in Kwangyang Bay. J. Kor. Fish Soc., 28, 247-252 
  44. Park, K.J., S.S. Cha and S.H. Huh, 1996. Food organisms of the postlarval shad (Konosirus punctatus) in Kwangyang Bay. J. Kor. Fish Soc., 29, 450-454 
  45. Pauly, D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. Int. Explor. Mer., 39, 175-192 
  46. Pauly, D., M.L. Soriano-bartz and M.L.D. Palomares. 1993. Improved construction, parameterization and interpretation of steady-state ecosystem models. In: Trophic Models of Aquatic Ecosystems. ICLARM Conf. Proc., Christensen, V. and D. Pauly, eds., pp. 1-13 
  47. Robin, C.R., R.M. Bailey, C.E. Bond, J.R. Brooker, E.A. Lachner, R.N. Lea and W.B. Scott. 1991. World fishes important to North Americans. Exclusive of species from the continental waters of the United States and Canada. Am. Fish. Soc. Spec. Publ., 21, pp. 243 
  48. Rosado-Solorazano, R. and Sergio A. Guzman del Proo. 1998. Preliminary trophic structure model for Tampamachoco lagoon, Veracruz, Mexico. Ecol. Mod., 109, 141-154 
  49. Shao, K.T. and P.L. Lin. 1991. Fishes of freshwater and estuary. Encyclopedia of Field Guide in Taiwan. Recreation Press, Co., Ltd., Taipei., 31, pp. 240 
  50. Sparre, P. 1991. Introduction to multispecies virtual population analysis. ICES Mar. Sci. Symp., 193, 12-21 
  51. Ulanowicz, R.E. 1986. Growth and Development: Ecosystem Phenomenology. Springer Verlag, New York, pp. 203 
  52. Ulanowicz, R.E. and J.S. Norden. 1990. Symmetrical overhead in flow and networks. Int. J. Systems Sci., 21, 429-437 
  53. Ulancowicz, R.E. and C.J. Puccia. 1990. Mixed trophic impacts in ecosystems. Coenoses, 5, 7-16 
  54. Walters, C., V. Christensen and D. Pauly. 1997. Structuring dynamics models of exploited ecosystems from trophic mass-balance assessments. Rev. Fish Bio. Fish., 7. 139-172 
  55. Whitehead, P.J.P. 1985. FAO species catalogue. Vol. 7. Clupeoid fishes of the world (suborder Clupeioidei). An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings. Part 1 - Chirocentridae, Clupeidae and Pristigasteridae. FAO Fish. Synop., 125(7/1), pp. 1-303 
  56. Wilson, F., J.G. Field and K.H. Mann. 1989. Network analysis in marine ecology: methods and applications coastal and estuarine studies 32. Springer-Verlag, Heidelberg, pp. 155 
  57. Wolff, M., V. Koch and V. Isaac. 2000. A trophic flow model of the Caete mangrove estuary (North Brazil) with considerations for the sustainable use of its resources. Est. Coast. Shelf Sci., 50, 789-803 
  58. Zhang, C.I. 2002. Prospect of ecosystem-based fisheries resource management. J. Kor. Soc. Fish. Res., 5, 73-90 
  59. Yosu. 2002. Final report of fishery impact assessment in Yosu, Gwangyang Bay, Korea, pp. 800 
  60. Zhang, C.I. and S.C. Yoon. 2003. Effects of climatic regime shift on the structure of marine ecosystem in the southwestern east sea during the 1970s. J. Kor. Fish. Soc., 36, 389-401 
  61. Jang, M.C., P.G. Jang, K. Shin, D.W. Park and M. Chang. 2004. Seasonal variation of zooplankton community in Gwangyang Bay. Kor. J. Environ. Biol., 22, 11-29 
  62. Baird, D. and R.E. Ulanowicz. 1993. Comparative study on the trophic structure, cycling and ecosystem properties of four tidal estuaries. Mar. Eco. Prog. Ser., 99, 221-237 
  63. Polovina, J.J. 1984. Model of a coral reef ecosystem. Part I. The ECOPATH model and its application to French Frigate Shoals. Coral Reefs, 3, 1-11 
  64. Rybarczyk, H. and B. Elkaim. 2003. An analysis of the trophic network of a macrotidal estuary: the Seine Estuary (Eastern Channel, Normandy, France). Est. Coast. Shelf Sci., 58, 775-791 
  65. Kang, Y.H. 2003. Carrying capacity and fishery resource release in the Bangjukpo surfzone ecosystem. J. Kor. Fish. Soc., 36, 669-675 

이 논문을 인용한 문헌 (4)

  1. Jang, Sung-Hyun ; Zhang, Chang-Ik ; Na, Jong-Hun ; Lee, Jung-Ho 2008. "Analysis of Trophic Structures and Energy Flows in Aquatic Ecosystem of the Lower Reaches of the Nakdong River" 환경생물 = Korean journal of environmental biology, 26(4): 292~302 
  2. Jang, Sung-Hyun ; Zhang, Chang-Ik ; Na, Jong-Hun ; Kim, Se-Wha ; An, Kwang-Guk ; Lee, Jung-Joon ; Lee, Jung-Ho 2008. "A Analysis of Trophic Structure in Lake Namyang Using the Ecopath Modelling" 한국하천호수학회지= Korean journal of limnology, 41(2): 144~154 
  3. Jang, Sung-Hyun ; Lee, Jung-Ho 2011. "Comparison of Trophic Structures and Energy Flows using the Ecopath Model in the Lake Namyang and the Lower Reaches of the Nakdong River" 한국환경생태학회지 = Korean journal of environment and ecology, 25(5): 747~759 
  4. Kang, Yun-Ho 2011. "Analysis of Sinjido Marine Ecosystem in 1994 using a Trophic Flow Model" 바다 : 한국해양학회지, 16(4): 180~195 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일